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1. INTRODUCTION AND LITERATURE REVIEW 

This thesis develops kinetic models for irreversible cooperative 

processes on lattices. The models describe processes on one, two or 

three dimensional lattices with any finite range cooperative effect. 

Models of an Ising nature are not applicable since there is no equi

librating mechanism for events (equilibrium is never established). 

The microscopic description of poly(methyl vinyl)ketone conden

sation (1) (see Figure 1.1) is an example of an irreversible process 

that occurs on a lattice. The one-dimensional (1-D) lattice sites have 

been chosen in two different ways in Figure 1.1 corresponding to an 

"atomic" or an "event" lattice description of the process. Occurrence 

of an event changes the state of a single site on the event lattice, 

but changes the state of more than one site (simultaneously) on the 

atomic lattice. The process of Figure 1.1 may be regarded as a dimer 

filling process since two nearest neighbor (n.n.) atomic sites are 

simultaneously changed. Notice that a dimer process on the 1-D atomic 

lattice corresponds to a process where monomer events occur with n.n. 

blocking on the 1-D event lattice (2). 

There are many other processes from diverse areas of chemistry and 

physics that can be regarded as occurring irreversibly at the sites of 

a lattice (e.g., see Figure 1.2-1.4). Several of these win be treated 

in later chapters of this thesis. 

For cooperative processes, the probability of an event occurring 

depends on the state of neighboring lattice sites within the cooperative 
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range. Attractive (enhancing) cooperative effects cause clustering of 

events to occur, while repulsive (inhibiting) cooperative effects also 

create distinctive distributions which are not random in nature. 

Various terms will be used to describe the state of a lattice site 

including reacted/unreacted, occupied(full)/empty, and damaged/undam

aged, depending on the physical situation. 

The probability of an event taking place on a site is indicated by 

a rate. The number of rates needed to account for configurational 

interactions corresponds to the number of different ways full and empty 

sites can be arranged within the cooperative range (some rates may be 

the same due to symmetry). On a uniform 1-D event lattice with reflec

tion symmetry and n.n. cooperative effects there are three such rates. 

These are illustrated in Figure 1.5 where x denotes a full site, o 

denotes an empty site and • indicates the site to be occupied (always 

empty). These rates are given the symbols t , x and x going from 
°  X X  0 « X  0 * 0  

x-x o-x 0 - 0  

Figure 1.5. Possible configurations for R=1 in 1-D 

left Co right in Figure 1.2, respectively. In general, the cooperative 

effects are not just n.n. and all sites within the cooperative region, 

R^, of the site of interest, i, must be designated empty or full. This 

configuration about i is given the symbol . In 1-D, it is possible to 

speak of the configuration of sites on the left of the site of interest, 

1 

I 

I 

i 
I 
I 
I 



www.manaraa.com

and the configuration of sites on the right of the site of interest, 

a^. The total configuration is as illustrated in Figure 1.6 for R=3. 

0^ 

O X O ' X X O  

4 : 4  
Figure 1.6. One configuration about the site of interest i for R=3 

The rate is then written as t  i = T  i.^i (e.g., for the specific con-

— —R 

figuration of Figure 1.6 the rate is written x ). 
O X O ' X X O  

In two-dimensions it is possible to designate the cooperative 

range by the distance through bonds (i.e., the number of lattice 

1 2 
vectors) from the site of interest (R ) or by the actual distance (R ), 

depending on the microscopic origin of cooperativity. Figure 1.7 shows 

the sites within the cooperative ranges R^=R^=1, R^=2 and R^=/2 for a 

2-D square lattice. The rates are again written where is the 

configuration cf sites within the interaction range of site i. The 

extension to three-dimensions is obvious. 

0 0 0  0 0 0  

0 0 * 0 0  0 * 0  

0 0 0  0 0 0  

R^=R^=1 R^=2 R^=/2 

Figure 1.7. Cooperative ranges for R^=R^=1, R^=2 and R^=/2 
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Either the probability of finding a configuration a on the atomic 

lattice, P(a), or the probability of finding a configuration o on the 

event lattice, f(ff), niay be used to describe the kinetics of a lattice 

process. Both will be used in this thesis, but the remainder of this 

section will deal with the event lattice description. The state of a 

particular site j will be denoted by where Oj=x indicates a full 

site and 0^=0 indicates an empty site. Further, let i be a filled site 

in a and a(a^-»-o) be the configuration obtained from a by changing the 

state of i to empty. The probability of finding a is increased by an 

event occurring at the ith site of a(a^.->o) and decreased by an event 

occurring on any empty site in a. The probability of these events 

occurring is influenced by those sites within the cooperative inter

action range. It is possible for some of these influential sites to 

not be in a, so the symbol is introduced to describe the configura

tion of sites within the cooperative range of j that are not in a. The 

kinetic equation describing the change of configurational probability 

T,yn ^ f 4 Tno T c 

d/dt £(0) • I I t j f(o(o »o) + oi) 

^ Gain 
a. =x 
J 

-  1  I  ^ ( 2  +  s i )  
j ̂2. jjj Loss 

a .  = 0  
J 

=  -  I  ( - l ) ^ j  I  T  j  f ( 0 ( G  ^ O )  +  ( 2 ^ )  ( 1 . 1 )  

a ^ 
where (-1)°=1 and (-1) =-1. 
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It is often convenient to consider the probabilities as functions 

of event coverage, 8=f(x), rather than time. The time dependence is 

eliminated and the 6 dependence introduced when Equation 1.1 is 

divided by df(x)/dt (i.e., df(G)/d0=df(a)/dt/df(x)/dt). 

It is also often desirable to transform those probabilities of 

configurations containing full sites to probabilities of configurations 

with only empty or unspecified sites (2). This can be done by using 

the following procedure. Let {n}^ and denote a subconfiguration 

of n sites specified occupied and empty respectively. A general con

figuration a may be decomposed as 0={m}^ + {n}^ and f(£) may be 

expressed as 

f({m} + {n} ) = ^ (-1)^ f({m} + {£} ) . (1-2) 
° * ° ° 

Equation 1.2 follows from conservation of probability. Two specific 

examples are 

f(x) = 1 - f(o) (1-3) 

f j xoo 
J ) J 
t  0 0  I  -  r I c  l^xoo = t j^ooj - r l^ooo - f 

o 
00 + f oooj . (1.4) 

Equation 1.1 provides a set of coupled differential equations. 

The set is infinite on an infinite lattice and finite on a finite 

lattice. This thesis treats the structure of these equations and 

describes the general conditions necessary to exactly solve the hier

archy. Some methods that may be used to approximately truncate the 

hierarchy and many examples of specific applications are also given. 
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Chapter two gives a simple illustrative example and then describes 

some general results. Some other results, mostly of a review nature, 

are then described to set the stage for later work. Chapter three 

reports some interesting new results and applications of the 1-D model 

including correlation functions, nonequilibrium entropy, multi-species 

adsorption and limited mobility. The hierarchy equations in 2-D will 

be treated in Chapter four. Chapters five through seven deal with 

specific physical problems such as polymer reactions, surface phenom

ena and radiation effects on crystals. 

The rest of this chapter reviews the current literature. The 

review begins with a short description and analysis of the noncoopera

tive case and then describes work on the cooperative models in a 

chronological manner. Some papers which deal with specific systems 

will not be reviewed here, but will be discussed in relevant subsequent 

chapters. If the reader is not interested in such a general review, 

he may go to Chapter two where a description of the kind of modeling 

used in this thesis may be found. 

1.1. Noncooperative Models 

Although this thesis is mainly concerned with cooperative problems 

it is necessary to discuss some noncooperative models to gain a better 

perspective into the methods used to solve the cooperative cases. Wolf 

(2) provides an excellent review of this material. This section will 

address important aspects of that work and include some references not 

mentioned by Wolf. 
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The earliest treatment of a space (lattice) filling problem is 

Flory's (1) 1939 analysis of the condensation reaction of neighboring 

ketone groups of poly(methyl vinyl)kentone (see Figure 1.1). He noted 

that reaction of any neighboring group reduces the original problem to 

two smaller ones. This reasoning results in a recursion relation for 

the difference between the average number of unreacted sites per mole

cule of length n at the end of the reaction and for that of a molecule 

of length n-1. This allows the problem to be solved for the fraction 

of unreacted sites at the end of the process. He gave this value as 

exactly exp(-2) for an infinite lattice. 

Cohen and Reiss (6) in 1963 extended the method of Flory to obtain 

integral equations which may be exactly solved for various empty sice 

configuration probabilities using generation function techniques. Their 

model for a finite lattice does not properly account for end effects, 

but gives correct results in the limit of an infinite lattice. Page 

(7), McQuistan and Lichtman (8), Widom (9), Barron and Boucher (10), 

Downton (11), Wolf (2) and Olson (12) have also treated the noncoopera-

tive dimer problem. 

Boucher (13) specifically treated the trimer event problem. He 

derived kinetic equations for the probabilities of various configura

tions of empty sites on finite lattices. Recurrence relations, gener

ating functions or a combination of these may be used to solve the 

equations. Time dependent results are given. He reports the fraction 

of empty sites to be approximately 0.17635 at the end of the process. 

He also reports the fraction of paired empty sites at the end of the 
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process to be exactly 2e . The problem of an n-mer event on a finite 

lattice has also been treated in a similar manner by Gordon and Hillier 

(14), Boucher (15), MacKenzie (16) and Wolf (2). 

1.2. Cooperative Models 

Various polymer reactions have provided motivation to pursue the 

irreversible, cooperative lattice model. Keller (17), in 1962, observed 

several polymer reactions which have n.n. effects. He developed equa

tions for the average fractions of unreacted sites having zero, one or 

two reacted n.n. The equations were closed by assuming the rate of 

reaction of the end site of three consecutive empty sites as a weighted 

average of the cases where the end site has an unreacted n.n. and where 

it has a reacted n.n. 

In 1963, Alfrey and Lloyd (18) considered the cooperative, irrevers

ible model on a finite "ring" lattice by introducing a complete set of 

equations describing unreacted sequences of varying length. They also 

considered the infinite chain model, exactly solved it for one special 

case and presented approximate methods of solution for other cases. 

Arends (19), in a companion paper to that of Alfrey and Lloyd, 

obtained an exact solution for the kinetic equations describing the 

rate of change in the numbers of the various sequence lengths and the 

number of unreacted sites. He gave the particularly simple expression, 

expC-T^ gt], for the conditional probability of finding an empty site at 

the right of two consecutive empty sites, where is the rate for an 

event ocurring between two empty sites. This significant result will 
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appear in most of the models discussed in this section. Keller (20), 

also in 1963, published a second paper showing that Arends' solution can 

be obtained by solving Alfrey and Lloyd's equations and that all of 

these results verified the hypothesis of his previous paper. 

In 1965, McQuarrie et al. (21) described the irreversible kinetics 

of denaturation or renaturation in an exact manner using a n.n. coopera

tive model as suggested by the Zimm and Bragg (22) statistical mechan

ical treatment of the equilibrium thermodynamic properties of poly

peptides. They exactly solved the hierarchy of equations for the total 

number of n-tuples (configurations of n consecutive empty sites). The 

solutions are given succinctly in terms of incomplete gamma functions. 

Six years later, in 1971, Schwartz (23) analyzed the general 

cooperative kinetics on a linear Ising lattice. In his discussion of 

the nonequilibrium case, he postulated the "triplet closure rule" which 

has been shown to be only an approximation for truncating conditional 

probabilities (2). Schwartz also emphasized the the Go-Kikuchi theory 

(24,25) (a path integral formalism) is essentially equivalent to the 

(approximate) triplet closure rule. 

Boucher (26), in 1972, extended the irreversible finite lattice 

model with n.n. cooperative effects from monomer to n-mer events. An 

asymptotic analysis provided results for the infinite lattice. A table 

listing the fraction of sites left vacant at the end of the filling 

process for selected n-mer events is given. 

In 1974, Gonzalez et al. (27) again solved the n-mer event problem. 

They modeled the process as an event occurring which blocked a specified 

number of nearby sites, n-1, from reacting and was influenced by the 
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state of the n-th site. This corresponds to an n-mer event with n.n. 

cooperative interaction. They directly solve a hierarchy of kinetic 

equations for the average densities of various length sequences of 

unreacted sites. Finite lattice effects are also examined by using a 

generating function technique. Special cases for n.n. effects are 

analyzed and the continuum limit of Renyi is obtained. 

By the mid-1970s, it was realized that probability distributions 

for occupied sites were not obtainable from those for empty n-tuples. 

Several authors (28-33) proposed models to obtain these filled distri

butions. Of this group only Platé et al. (32) correctly described the 

general procedure for obtaining all probabilities for a n.n. coopera

tive process which are needed to exactly find occupied site probabili

ties. As an example, to calculate P(oxo) it is necessary to know 

P(o_o) which in turn requires P(oo^o) and P(oo_oo). After truncation, 

the three kinetic equations for these probabilities are closed upon 

themselves and the consecutively empty configurations previously 

described. To calculate other occupied probabilities the hierarchy 

must again be extended to include configurations with two unspecified 

sites between the empty sites by adding the equations for P(o o), 

P(oo o) and P(oo oo). This process may be continued to describe 

any singly disconnected configurations in analytic form. This process 

of hierarchy extension is diagramed in Figure 1.8 where the equations 

for all configurations above and to the left of a configuration of 

interest must be known. (To calculate P(oo_o) requires P(oo_oo), 

P(ooo), P(oo) and P(o) to be known but not P(o_o).) It is pointed out 
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Figure 1.8. Configuration hierarchy for singly disconnected clusters 

of empty sites (see text) 

by Plate et al. (32) that configurations with multiple disconnections 

(e.g., o_o_o) require repeated recursive integration to determine their 

probabilities. The recursive integration is performed on hierarchies 

of kinetic equations for multiply disconnected configurations which are 

extended as in the singly disconnected case and require all previously 

determined configurations. Platé et al. also discuss Markovian approxi

mations and show all but the first order Markovian approximation to be 

quite accurate when compared to the exact result. 

One way to generalize the above problem is to allow more than one 

kind of event to occur. This general topic is treated in Chapter three. 

One special case of this generalization where an initial event (A) takes 

place and terminates then a second event (3) is allowed to occur was 

discussed by Hemmer and Gonzalez (34) in 1977 to describe neighboring 

group effects in repeated oxidations of polysaccharides. They performed 

a periodate oxidation experiment with polysaccharides which cause 

inhibitory effects due to hemiacetal formation. This was event A. They 

then removed the hemiacetals allowing further oxidation on the unreacted 
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sites but not allowing any second reactions on the initially reacted 

sites. The second oxidation was then performed (event B) without any 

cooperative effects from the sites reacted by event A. Only n.n. 

cooperative effects were considered in their model. These workers use 

an exact method called the "principle of independence of unreacted 

neighbors" to truncate the hierarchy. This principle is applicable to 

finite, semi-infinite or infinite lattices with n.n. cooperative 

effects. For single event processes, it may be stated as follows: 

The probability of any subconfiguration with two 

consecutive empty sites is a product of probabili

ties for the corresponding subconfigurations on the 

smaller lattices obtained by a partition of the 

original lattice between the unreacted site. 

It is important to appropriately describe the rate of an event occurring 

on the newly created end site when using this rule. 

Another generalization of the basic lattice model is to consider 

the lattice to be composed of more than one kind of site. This model 

has been treated by Gonzalez and Heimtier (35-38) to describe n.n. 

cooperacive rcaciiioas oa copolymers. They ccnsidcr periodic end ncn-

periodic sequences. For the nonperiodic lattices, they consider random, 

Markovian and second-order Markovian copolymers. They also separately 

consider the cases where only one monomer event is cooperative and 

where both types of units exert different cooperative effects. 

The most recent articles describing these kinetic models were 

written by Epstein (4,39) (in 1979) and Wolf et al. (3) (in 1980). 

They both consider hierarchies with only empty site configurations. 

Epstein considered large-ligand binding and analyzed both the non-
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cooperative and cooperative cases on an infinite lattice. His approach 

was the same as Cohen and Reiss, including the same incorrect descrip

tion of end effects on the finite lattice. In his work, concise 

expressions are given, including the general expression for the final 

covering fraction. The role of the shielding condition in the 

solvability may also be clearly seen. The case of competitive binding 

of different size ligands is also treated. 

The continuous analog of these problems has also been considered 

(the so-called "parking problem"). In this case, intervals of fixed 

length, r, are placed randomly on a continuous line (as opposed to a 

discrete lattice). This may be thought of as decreasing the spacing 

between lattice sites while keeping the blocking length constant. 

This clearly shows the continuous case to be a limit of the discrete 

case (2). Rényi (40) first treated the parking problem by direct 

analysis of the distributions. 

The number of 2-D and 3-D analyses is significantly smaller than 

the volume of 1-D studies just discussed. The random dimer filling 

problem on a square lattice has been studied by Peri (41), Rossington 

and Borst (42) and Vecte et al. (43) who give the final surface cov

erages as 0.904, 0.909 and 0.902, respectively. Vette et al. also 

report values for the hexagonal (0.880) and triangular (0.915) lattices. 

The relationship between adsorption of squares on a square lattice and 

n-mers on a linear lattice has been examined by Blaisdell and Solomon 

(44). They found that the generalized Palasti conjecture (45), which 

says that the packing density for the 2-D problem is the square of that 
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for Che 1-D lattice, is only approximate. Other 2-D work dealing with 

specific physical system will be discussed in Chapter six. 

Jackson and Montroll (46) considered random dimer formation in 

3-D. They used a simplified statistical model where average concentra

tions of unreacted sites are calculated. They report the fraction of 

unreacted sites to range from 0.14 for a simple cubic lattice to 0.10 

for a face-centered cubic lattice. 

Wolf et al. (3) describe the immobile adsorption of nitrogen 

atoms from an energetic precursor state onto the (100) face of 

tungsten. They introduce conditional probabilities and clearly 

demonstrate the relationship between truncation of the hierarchy 

and the shielding condition which will be further discussed in 

Chapter two. An ordered filling limit which causes all sites 

without any nearest neighbors to fill before sites with one n.n. 

and sites with only one n.n. to fill before sites with two n.n. 

is thoroughly discussed. The corresponding 2-D problem is also 

considered. An extensive review of the methods used by Wolf (2) 

and extensions of this theory are given in Chapter two. 

Very little has been published about irreversible, coopera

tive lattice models in higher dimensions. Hoffman (47) has 

derived and solved kinetic equations governing the distribution 

of adatoms resulting from irreversible, dissociative adsorption 

of homonuclear diatoms onto a 2-D lattice. The rate constants 

were assumed to be of an Arrhenious form and the solution is 

expressed as a power series in the covering fraction with 
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coefficients involving molecular cluster diagrams similar to those 

in equilibrium virial expansions. An analysis of many features of 

the general model, including shielding, has recently been given (48) 
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2. GENERAL MODEL 

The irreversible cooperative models of Section 1.2 have many appli

cations. Some of these have been treated previously, but in some cases 

the workers seem to not be aware of one another's efforts. This chapter 

will cover three areas. First, a simple example of the kinetic equa

tions for certain 1-D, irreversible cooperative lattice processes and 

various modifications of these will be given. The second section will 

present some general results that will place the approaches previously 

discussed into a common framework and extend their applicability. The 

last section will briefly outline the cases where solutions can be 

extracted using a shielding condition. 

2.1. The 1-D Lattice with n.n. Cooperative Effects 

The presentation of this example is essentially the same as that 

given by Wolf (2), thus some details have been omitted. The reader is 

referred to Reference 2 for those details. 

Consider an infinite linear lattice composed of equivalent, 

equally spaced sites where a single type of irreversible event occurs 

with n.n. cooperative effects. Also assume that the probability of an 

event occurring on a site within time dt can be written as p(t)T^^^, dt, 

where p(t) is the source density (e.g.^ precursor density of adatoms 

for chemisorption) and is time independent. Reflection symmetry 

is assumed in this example so that x ,=x , . A transformation to the 
O'O a ' 0  

chemical time scale dt=p(t) dt is assumed throughout this thesis. 
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Wolf assumes the lattice to be initially empty. Thus, at t=0 

the probability of any configuration of empty sites is unity. This 

corresponds, for example, to a completely unreacted polymer chain. 

The time rate of change for the probability of finding a single 

empty site is (cf.. Equation 1.1) 

d/dt f(o) = -T f(ooo)-2T f(oox)-T f(xox) (2.1) 
O-O O'X XX 

where the condition of each site is indicated in parentheses. The 

kinetic equations for probabilities of n consecutive empty sites are 

(after using Equation 1.2 to transform to all empty configurations) 

d/dt f(l) = -T^^^f(3)-2T^,^Cf(2)-f(3)n-T^,^Cl-2f(2)+f(3)n (2.2) 

and 

d/dt f(n) = -(n-2)T^^^f(n)-2T^^^f(n)-2(T^^^-T^^^)f(n+1), n>2, (2.3) 

where f(n) is the probability for an empty n-tuple of sites. Note that 

for every n the equation for f(n) has a term involving f(n+l). Equa

tion 2.6 is thus an infinite set of coupled differential equations. 

This infinite set of equations can be truncated by introducing 

the conditional probability 

q^ = f(n-M)/f(n) (2.4) 

which is the probability of an empty site given n adjacent empty sites. 



www.manaraa.com

22 

Equations 2.2 and 2.3 can now be written in terms of conditional 

probabilities as 

and 

d/dC n>2 .  (2 .6)  

It is clear that given the boundary conditions (q^^q2=l at t=0) 

q^^q^i, n^2, is a unique solution of these equations. This independence 

of n will be referred to as shielding (the idea of shielding is illus

trated by letting q^=qo[n] and observing that qo[ooa]=qoCoo] independent 

of 0 ) .  

Substituting into Equation 2.6 gives 

92 = exp(-TQ,gt) . (2.7) 

This is the same result originally found by Arends (19) and allows 

and all other probabilities to be expressed analytically. 

2.2. General Results for Empty Site Configurations 

General results for empty site configurations on lattices of 

general dimension and general cooperative effects are now developed. 

The set of kinetic equations for configurations where only empty or 
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unspecified sites appears on the left hand side is (cf.. Equation 1,1) 

which is the conditional probability of configuration a_ given the 

adjacent configuration a'. The expression o + a' means the union of 

the two individual configurations. Also, a is called the conditioned 

configuration and a' is called the conditioning configuration. 

Differentiating the natural logarithm of Equation 2.9 with respect 

to time yields 

d/dt f(c) = - % I T^j f(a + 2^) . 

J - . 

( 2 . 8 )  

a .=0 
J 

An equivalent hierarchy can be written by using 

q oCg/] = f(o + o/)/f(G') ( 2 . 9 )  

d/dt £n q oCo'] = d/dt f(a+a'd/dt f(a') . (2.10) 

Equation 2.8 then gives 

d/dt &n q ] = - I I ^ t S * )  

jeo+o' j - f(o+a') 

(2.11) 

The ratios of probabilities can be expressed as conditional probabili

ties to obtain 
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d/dt £n q aCa'J = - [ % toj 9 

jeo+o' gj -

+ I I T j q G^Co'] . (2.12) 

:»• ,j 2 

This result is used extensively in Chapter four where the 2-D system 

is discussed. Any conditional probabilities that may arise on the 

right hand side of Equation 2.12 with full conditioned sites may be 

transformed to expressions with only empty sites using Equation 1.2. 

As an illustration of Equation 2.12, the equation for qoCoo] is written 

for n.n. cooperative effects in 1-D as 

d/dt Jin qoCoo] = -x -2(t qoCooo]+T qxCooo]) 
^ 0»0 0*0 o*x 

+2(t qoCoo]+T qxCoo]) . (2.13) 
0*0 O'X 

After setting qxCooo]=l-qoCooo], qxCoo]=l-qoCoo] and rearranging. 

Equation 2.15 is found uo be Equation 2.6 for a-2. Equauioa 2.12 is, 

of course, general and independent of dimension and cooperative inter

action range. 

The shielding condition will now be discussed in a more general 

context. It is possible to show from the hierarchy equations that in 

systems with finite range cooperative effects, an exact "shielding 

condition" exists for walls of sites specified empty. This condition 

has Che following general form: 
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Consider a wall of sites specified empty dividing 

the system into two disconnected regions. Suppose 

the wall is sufficiently thick that an event occurring 

at a site within the wall is not simultaneously 

affected by the state of sites on both sides. Such a 

wall shields sites on one side from the influence of 

those on the other (provided the initial conditions 

incorporate this independence). 

For certain 1-D systems, this condition leads to exact truncation and 

solution in closed form of the hierarchy as previously shown. For 

other systems, it provides a basis for approximate truncation of the 

infinite hierarchy. If, in the 1-D model, cooperative effects are 

specified to be of range R, then a shielding wall of thickness 2R is 

required. This terminology is used in higher dimensions even though 

the definition of wall thickness must be made explicit for each lattice 

geometry and rate specification. A shielding condition is not available 

for occupied sites (this sort of asymmetry between empty and occupied 

sites is not present in equilibrium distributions as discussed in 

Section 3.2). 

Tn order to firmly establish the shielding condition concept> some 

examples will now be given. The simplest cases occur in 1-D. Equa

tions 2.14 illustrate shielding for R=l, R=2 and R=3 in 1-D. 

qoCoooxo] = qoCoo], R=1 

qoCooooxxoD = qoCoooo], R=2 (2.14) 

qoCooooooxox] = qoCoooooo], R=3 

For a ring lattice, it is necessary to have two blocks of 2R consecutive 

empty sites in order to completely disconnect the lattice. Equations 

2.15 provide examples for the ring lattice when R=1 and R=2. The site 
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outside of the brackets is the conditioned site and the sites within 

the brackets are the conditioning sites. 

^ 

<2° \ , <S° 
q o J = <3 o ' 

<̂ 0. /' 

(2.15) 

o O %  o O  
O 

<3: \ 
q G I = q o 

<ol / / O - / o / 
Ox Oo 

In 2-D, the shielding wall must be of infinite length or connect 

back on itself. Figure 2.1a illustrates a shielding wall for the 2-D 

R^=l case, while Figure 2.1b illustrates a portion of a shielding wall 

for 2-D R =2 and R*'=/2. That an event within the wall is not influenced 

simultaneously by sites on both sides of the wall is also pointed out 

in Figure 2.1b for the R^=/2 case (above) and the R^=2 case (below). 

The gaoniarry cf the lattice will dictate characteristic shapes of 

the shielding wall. Some generic examples are given in Figure 2.2. 

Isolated sublattices such as the one in the center of the 2R shielding 

wall of Figure 2.2b are described by a finite number of conditional 

probability equations. It is of interest that the configuration of the 

surrounded sites has no influence or. the rest of the lattice. In the 

same way, the edge of a semi-infinite lattice will not affect interior 

sites if a shielding wall is present along the edge (see Figure 2.2d). 
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Figure 2.1. Shielding walls for the 2-D R'=l case (a) and the R'=2 

and R^=/2 (b) cases 
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On a torus shaped lattice there must be two shielding walls 

about the same axis in order to completely disconnect the lattice. 

In 3-D, the lattice may be disconnected by a set of consecutive 

infinite planes with thickness 2R. Alternatively, any surface of 

thickness 2R which completely encloses a portion of the 3-D lattice 

would shield since an event on an enclosed site would not influence 

nor be influenced by events that were not in the enclosed sublattice. 

The general proof of the shielding condition is not given, but 

the spirit is illustrated by the following examples for 1-D and R=1. 

From Equation 2.12 

d/dt Jin qoCoox] = -x qxCoooxD-T qoCoooxD-r -r 
0*X  O 'O O 'X  0 *0  

+T qxCoox]+T qoCooxl+T . (2.16) 
O'X  O 'O o«x 

After application of the shielding condition, all terms of Equation 2.16 

will cancel except and qoCoox3=e ^o*o^. If the equation is 

written for qoCooxo] it is found that 

d/dt 2N qoCooxo] = -T  qxCoooxol-X  qo[oooxo] -T  qCoooxolo 
0*X  O ' O  O'X"  

-T qCoooxo]x-T -T +T qxCooxo] (2.17) 
X'X  O 'X  O 'O O 'X  

+T qoCooxol+T qCooxolo-T qCooxolx+T 
O'O"  O 'X  X 'X  O 'X  

It is again seen that application of the shielding condition results in 

cancellation of all terms except ^ and qoCooxo]=e ^O'O^. This is. 
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of course, the same result which establishes the shielding obtained 

for qoCoo3(cf., Equation 2.7). 

The general proof follows the reasoning established above except, 

rather than showing that all terms other than T  cancel, it is shown 
O'O 

than even though there may be terms that do not cancel, those terms 

are independent of the condition of sites on the opposite side of the 

shielding wall (i.e., the argument is one of self-consistency). 

The shielding condition automatically establishes relationships 

between various probabilities. For example, P(ooox)/P(oox)= 

P(oooxo)/P(ooxo) (as shewn above qoCooxD=qoCooxo3 in 1-D and for R=l). 

Analogous equalities also hold in other dimensions. 

2.3. Exactly Soluble Systems 

Even though a shielding condition can be described for all 

dimensions and finite cooperative effects, there are only a few systems 

having shielding conditions that allow exact truncation of the kinetic 

equations (in closed form). Only a limited number of 1-D systems and 

no systems of dimension greater than one are exactly soluble (in 

closed form). 

The exactly solvable 1-D, R=1 case has been treated by several 

authors in a variety of contexts. Platé et al. (32,33) and Wolf (2) 

give a method for obtaining the nested sets of disconnected empty site 

configurations described in Section 1.2. Chapter three will give an 

alternative method tailored to analyze the large separation behavior of 

correlation functions. 
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Wolf (2) has shown that a process with sites l,2,"-,r (from the 

site of interest) blocking and sites r+l,r+2,*••,2r+l having coopera

tive effects can be exactly solved. Epstein (4,39) also discussed 

this for the simplest case. Other exactly soluble systems include 

certain cases of multi-event processes and certain cases involving 

limited mobility. These and other interesting examples are discussed 

in detail in Chapter three. 

The corresponding semi-infinite systems can also be exactly 

solved. Wolf (2) has discussed several aspects of these lattice prob

lems in 1-D including both noncooperative and cooperative irrevers

ible events. He gives both an iterative and a transform solution for 

the cooperative case. Specific rates for landing on the end (1st) 

site with an empty n.n., and for landing on the end site with an 

occupied n.n., i , besides the usual rates i , x and t must 
X-1 O'O O'X XX 

be identified for 1-D and R=l. For this reason, special equations for 

the end sites are needed. For longer range cooperative effects, more 

rates must be identified co account for chose situatioas. Figure 2.3 

shows how the difference between finding site i, near the end, empty 

and finding an interior site empty, f^(o)-f(o), changes going toward 

the interior from the end site (labeled one). These calculations are 

for the 1-D, R=1 semi-infinite lattice where t =1.5, x ^=0.5, 
O'l x*l 

X =0.3 and x =0.09. This choice of rates corresponds to a small 
O-X XX 

repulsive cooperative effect for all interior sites, a slightly less 

repulsive effect for landing on the end site with a n.n. and an 
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Figure 2.3. The difference between the probability of finding an empty site near the end of a 1-D 

semi-infinite lattice and the probability of finding an empty interior site as a 

function of the distance from the end site (labeled one). Here T^^^=1.5, t ^=0.5, 

T =0.3 and t =0.09 
o-x x*x 
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enhanced rate for landing on the end site without a n.n. The results 

indicate that for this case the end effects are very small beyond five 

sites from the end. In many instances, end effects may not be important 

when describing reactions on long lattices (e.g., long polymer chains) 

and infinite lattice models may be effectively used to describe these 

processes. 
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3. 1-D MODELS 

The 1-D case of the general theory presented in Chapter two is 

interesting because a) irreversible 1-D processes (e.g., many polymer 

reactions) are described by this model, b) some results are exact and 

can be used as a tool to test approximations from models that are not 

exactly soluble and c) the procedures developed in 1-D often extend 

to higher dimensions. 

3.1. Single Site Cooperative Tail beyond r n.n. Blocking Sites 

A process with sites l,2,*»',r (from the site of interest) 

blocking and site r+1 cooperative tail which begins on a completely 

empty lattice will be treated in this section. The four rates needed 

to describe this process are x , t , t , and t , where x is the 
OO OX XO XX 00  

rate of an event occurring on a site flanked on both sides by r+1 

consecutive empty sites, x^^ is the rate of an event occurring on a 

site flanked on the left by r+1 consecutive empty sites and flanked on 

the right by r consecutive empty sites and then one full site, x =x 
° XO ox 

(throughout this chapter reflection symmetry is assumed) and x^^ is the 

rate of an event occurring on a site flanked on both sides by r consecu

tive empty sites and then one full site. Reduced rates will be denoted 

° ' ox 'ox' "oo'' 

After converting the configurations of Equation 1.1 to only include 

empty sites, it is found in this case that 
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-d/dt f(n) = nCT f(2r+l)+2(T -T )f(2r+2)+(T - I x  +T )f(2r+3)Il, 
XX OX XX OO OX XX 

l<n<r+l , (3.1) 

k 

-d/dt f(r+l+k) = 2 Y C T f(2r+k-£+2)+ (T  -T  )F(2r+k-£+3)] 
ox OO ox 

&=1 

+(r+l-k)CT f(2r+l)+2(T -x )f(2r+2) 
XX ox XX 

+(t -2t +t )f(2r+3)], l<k<r+l , (3.2) 
OO ox XX 

r+1 

-d/dt f(2r+2+k) = ll {% Ef (3r+k-£+3)-f (3r+k-«,+4)]+T f(3r+k-£+A)} 
£=1 °° 

+kT^^f(2r+2+k), k>0 . (3.3) 

Application of the shielding condition leads to qoC2r+2+k]=qoC2r+2]=q 

which implies 

q = e (3.4) 

and 

f(2r+2+k) = f(2r+2) , k>C . (3.5) 

Converting to functions of 6 gives 

-d/d6 f(n) = n , i <n < r-i-l (3.6) 

-d/de f(r+l+k) = — +r+l-k. 

f(2r+2) 

F(f(2r+l),f(2r+2),q) 

l < k < r + l  ,  ( 3 . 7 )  
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and 

q F(f(2r+l),f(2r+2),q) ' 

where 

F(f(2r+l),f(2r+2),q) = p f(2r+l)+{2(p -p )+(l-2p +p )q}f(2r+2) . 
30C U jv XA UX XX 

(3.9) 

These equations form a closed, coupled set which may be solved for 

the various probabilities. Of particular interest is the saturation 

value of 6,0*. Integrating Equation 3.8 from q=0 to 1 and making use of 

the fact that q=0 at 6=9* gives 

1 

)* = 
i 

d,' l'(f(2r-H) f(2r+2).V) (3.10) 

where f(2r+l) and f(2r+2) are functions of q'. 

3.1.1. Examples of tail interactions for r=l 

Four examples follow to show how the process changes as the 

cooperative effect of the tail is varied from very attractive to very 

repulsive. 

(1) Infinitely strong attractive tail. For n.n. blocking and 

infinitely strong attractive second n.n. events will occur in a totally 

ordered fashion as shown in Figure 3.1. In this case, all probabilities 

of consecutive empty sites greater than one go to zero when the covering 
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4 4 
•••ooxoxoxoxoxoxoo••• 

Figure 3.1. Totally ordered filling of a 1-D lattice 

fraction equals 0.5. The conditional probability, q=qo[oo], remains 

one until 6=0.5 and then it is zero. See Figure 3.2. 

(2) Strong attractive tail. If the attractiveness of the 

second n.n. is relaxed then ordered clusters, or islands, of the type 

shown in Figure 3.1 will form. The length of these islands will 

increase with p . As p (attractive limit) the lattice becomes one 
ox ox 

long cluster of perfectly ordered events as discussed earlier and 

9*=0.5. As p^^ gets smaller the island size decreases and more doublets, 

separating islands, occur. This results in 6* being less than 0.5. 

Some probabilities are graphed against 6 for this case in Figure 3.3. 

(3) No cooperative tail. When the second n.n. has no cooperative 

effect the process is n.n. blocking where r=0 and p =p =0. For such 
ox XX 

a process Equations 3.7 and 3.8 give 

f(2) = . (3.11) 

At the end of the process q=0, f(2)=e ̂  (the Flory result) and 6=6*= 

1/2(1-e ^)=.43233*. This case is illustrated in Figure 3.4. 

(4) Infinitely strong repulsive tail. The last case that will be 

considered is when the second n.n. is in the strongly repulsive limit. 

When p »p »p the process will proceed in three stages corresponding 
OO OX XX 

to events occurring with no occupied second n.n., one occupied second 

n.n. and two occupied second n.n. 

I 
1 

I 
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1.0 

0 .8  
f(l) 

0 . 6  

f (n) , n > 2 

0 . 2  0.4 6*=0.5 0 . 8  1 . 0  

6 

Figure 3.2. The probabilities f(n) and q as a function of 6 for n.n. 

blocking and second n.n. infinitely attractive 
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f ( l )  

f (3)  

f (2)  

0.4 

f(4) 

xi 
J a 0 . 0  I  

0.0 0.2 0.4 8*=0.463 0.8 1.0 

Figure 3.3. The probabilities f(n), l<n< 4, and q as a function of 6 

for n.n. blocking and second n.n. moderately attractive 
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1.0 

0 . 8  
f(l) 

0 . 6  

(2)  

f(3) 

6*=0.432 0.6 0 . 8  0 . 2  1 .0  

0 

Figure 3.4. The probabilities f(n), l^n< 3, and q as a function of 6 

for n.n. blocking and no second n.n. cooperative effect 
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During the first stage d/d6 f(2)=-2, d/d0 f(3)=-3, and 

f(n)->0 for n^5 as 0->6*(l), where 0*(1) is the event coverage at 

the end of the first stage. The value of 8*(1) may be obtained using 

Equations 3.7 and 3.10 where p and p are set to zero. This allows 
ox XX 

Equation 3.10 to be expressed in terms of Dawson's integral (49) as 

e*(l) = D(2)-e~^D(l) = 0.27455 . (3.12) 

Also, Equation 3.7 can be used to find that 

f(4)l8*(i) = e-3 . (3.13) 

During the second stage 0*(1).< 0^0*(2), d/d0 f(2)=-2, d/d0 f(3)=-2 

and d/d0 f(4)=-l. At the end of this stage f(4) equals zero and by using 

the geometric construction shown in Figure 3.5 

e*(2) = 8*(l)+f(4)|Q*(^) = 0.32434 . (3.14) 

Other values of interest may also be determined analogously to Equation 

3.14. For example, 

f(3)10^(2) = l-38*(l)-2[8*(2)-8*(l)] s 0.07677 . (3.15) 

During the final stage 6*(2)<0<0*(3), d/d0 f(2)=-2, d/d0 f(3)=-l 

and, at 0=0*(3), f(3)=0. The expression for 0*(3) is 

e*(3)  = G*(2)+f(3) |g*(2)  a  0.40111 .  (3 .16)  

This case is graphically illustrated in Figure 3.6. 
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0 

0.25 (1)=0.275 0.5 0.35 

Figure 3.5. Geometric construction for determination of 6"(2) 
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1.0 

0 . 8  
f ( l )  

f (2)  

f(4) 

f(3) 

0 . 8  1.0 0.2 0*(1)=O.276 0 . 6  0.0 

8*(2)=0.324 8-» 

9*(3)=0.401 

Figure 3.6. The probabilities f(n), l^n^4, and q as a function of 6 

for n.n. blocking and second n.n. strongly repulsive 
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3.1.2. Saturation coverage as a function of tail interaction for r=l 

The behavior of 9*, as the second n.n. cooperative tail is varied 

from very repulsive to very attractive, is shown in Figure 3.7. As 

p -+0 the three stages discussed in the last section become more dis-
ox 

tinct, but the process continues through all stages as long as p^^^O 

2 
(assuming p =p ). It should be noted, however, that if p =0 the 

XX ox ox 

maximum coverage is 0.27455 since 0^84 8*(1) . It is also possible to 

have a process where p 4=0 (but p »p ) and p =0 which would result 
ox ' OO ox XX 

in a final coverage of 0.32434 as previously shown. Interpretation of 

experimental data for irreversible processes with repulsive cooperative 

effects must be done with caution since any of the above (or other) 

final coverages may be observed due to time constraints or due to 

competing reactions. 

The results of this section could have also been obtained in a 

manner similar to that of Wolf et al. (3) from the solution of the most 

general problem (2). Their method starts with an analytical solution 

for general rates from which limits for various ratios of those rates 

are taken (e.g., x /i ->-0). 
ox oo 

3.2. Filling in Stages for Highly Repulsive Interactions 

General filling in stages and an extension of exact solutions using 

this concept will be treated next. Certain symmetry considerations for 

probability functions in the highly repulsive case and perturbation from 

the repulsive limit will then be discussed. 
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Figure 3.7. Saturation coverage as a function of p 
ox 
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3.2.1. Analysis of filling in stages 

The problem of arbitrary cooperative effects for sites within a 

total range R is not exactly solvable. If, however, the cooperative 

effects are such that stages occur, each having a characteristic rate, 

then exact results can be obtained for the process using the method 

introduced in the last section. In that section, three stages were 

found for an R=2 process with n.n. blocking and highly repulsive 

second n.n. If the n.n. blocking is relaxed, two more stages appear, 

the first of these filling sites with one occupied n.n. and the second 

filling sites with two occupied n.n. Table 3.1 summarizes these stages 

for R=1 (3) and R=2. 

This same kind of analysis can be applied to any process displaying 

a behavior of filling in stages (for arbitrary, but finite, R). In 

order to understand this in a more general way, consider a strongly 

repulsive cooperative effect of range R where the repulsive cluster 

increases with decreasing distance (e.g., T <T <T , etc.). 
°  0*X  OO-OX OOO'OOX 

The lattice filling process will Lheii occur in an ordered manner and 

may be described by the following stages: 

(1) O^6^0*(l) , oo* •'ooo* • *00 

R R 

d/d0 f(n)=-n , n=l,2,•••,R+1 

f(n)^0 for n>2R+l as 8+8*(l)  

KD = 
 ̂ +̂1 1 

expC-2 \ —^] dq 
1=1 
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Table 3.1. Stages for highly repulsive neighbors when R=1 and R=2 

A. R=l, highly repulsive n.n. 

I. 0<8<8*(1)=0.43233,  coo, d/d8f(2)=-2,  f(3)-K) 

II. e*(l) <e<9*(2)=0.56767, xoo, d/dBf(2)=-1 ,  f(2)->0 

III. 8*(2)< 8 <1.00000 ,  xox,  d/d8f(2)=0,  f ( l )+0 

B. R=2, highly repulsive first and second n.n. 

I. 0^6 <e*(l)=0.27455, ooooo, d/def(3)=-3, f(5)^0 

II. 8*(l)<e<8*(2)=0.32434,  xoooo, d/def(3)=-2, f (4)^0 

III. 8*(2)<8<8*(3)=0.40111,  xooox, d/def(3)=-1 ,  f (3)->0 

IV. e*(3) <0 <e*(4)=0.59889, xoo , d/def(3)=0, f(2)^0 

V. 6 *(4) < 0 < e *(5)=l.OOOOO, xox , d/d6f(3)=0, f(l)-^0 



www.manaraa.com

47 

(2) 8*(1)48<8*(2) , xo* • •ooo* • *00 

R-1 R 

d/d0 f(n)=-n , n=l,2,-»»,r 

d/dO f(r+k)=k-r-l , k=l,2,-'-,r 

f(2R)->0 as &+8*(2)  

8*(2)=8*(l)+f(2R)|Q*(i) 

(3) 9*(2) ̂ 0^6*(3) , xo*••ooo*•-ox 

R-1 R-1 

d/de f(n)=-l , n=l,2,3,•••,r 

d/d0 f(R+k)=k-R , k=l,2,•••,r-l 

f(2R-l)^ as 0->0*(3) 

e*(3)=8*(2)+f(2R-l)|g*(2) 

(4) 0*(3)<9^6*(4) , X0'"'000""'0X 

R-2 R-1 

d/de f(n)=-n , n=l,2,•••,R-1 

J  / J O  - c  _ " D  =  n  1  • • •  ! ? _ ' >  
U / U V  . t y i . V » C N . y — r w l j .  1 . V  y  f c V  V  ,  —  

f(2R-2)^0 as 0-!-0*(4) 

e*(4)=8*(3)+f(2R-2)|2*(3) 

(2R+1) 8*(2R)<8<8*(2R+1)=1 , xox 

Figures 3.8, 3.9 and 3.10 graphically show the cases R=2, R=3 and R=4 

respectively. 
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f (4)  

f (5)  

0 . 8  1 .0  0.4 0 . 6  0 . 2  0.0 

0 

Figure 3.8. The probabilities f(n), l<n<5, and q for filling in 
stages when R=2 
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1.0 

f(l) 
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f (6)  

f (7)  
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0.2 0.4 0 . 6  0 . 8  1 .  
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Figure 3.9. The probabilities f(n), l<n<7, and q for filling in 
stages when R=3 
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. 0  

f ( l )  
. 8  

f(2) . 6 

.4 
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f (7)  
0 . 2  

f (9)  
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e 

Figure 3.10. The probabilities 

stages when R=4 

f(n), l^n<9, and q for filling in 
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3.2.2. Nonsymmetry of certain probability functions for highly 

repulsive interactions 

Equilibrium processes with pairwise interactions have the 

symmetry property 

where the empty (full) sites in a have been changed to full (empty) 

sites to form a*. Certain probability functions (e.g., f(2)+e) in 

the irreversible R=1 case (in 1-D) also have this symmetry. The 

symmetry might seem to follow from some kind of time reversal argu

ment (e.g., by emptying a filled lattice and filling an empty lattice 

to the same configuration by means which can be put in one-to-one 

correspondence). It is, therefore, interesting to consider this 

question in more detail. 

In the one dimensional equilibrium case. 

where is the condition of the first site of a and k, i, m and n are 

the number of n.n. pairs of the indicated q configurations (see Section 

3.3.2 for an explanation of the equilibrium Markovian behavior). 

Expressions for the conditional probabilities are shown using conserva

tion of probability to be 

f(2)le = (3.17) 

f(o;) = f (a^ )q'^o[o]q^xCx]q%[x3q^xCo2 (3.18) 

qoCo] = 
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qoCx] = 

qxCo: = • (3.19) 

The expression for f(2) is (50) 

f(2) = 1-8 - 28(l-G)/{[l+48(l-8)B(Tg)]^+l} (3.20) 

where B(T^)=(e ^®-l) and w is the repulsive interaction energy 

between n.n. events. Substitution of 9=1-6 into Equations 3.19 shows 

that 

qo[oo]|g = qx[xx]|^_g 

(3.21) 

qoCx: l g  = qxCo3l^ _ Q  .  

Equations 3.21 and f(a^)L=f(a *)I show that Equation 3.17 is always 

true in the one dimensional equilibrium case. 

In the irreversible case, however. Equation 3.17 is not true for 

all configurations. For example, consider f(ooo)|g and f(xxx)|^_Q for 

R=1 processes in the highly repulsive regime (in 1-D). During the 

second stage of filling f(ooo)=0 (all sites with no n.n. are full), but 

f(xxx)^0 since events can occur on both sides of a full site (during the 

second stage sites with one n.n. are filled). Any choice of 9 between 

0.432 and 0.568 will, therefore, contradict Equation 3.17. 

As mentioned earlier there are some functions, such as f(2)+6, 

that display the symmetry property in the repulsive limit of the 
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irreversible case. The symmetry is "quickly" broken, however, when the 

infinite repulsive limit is relaxed. For finite interactions the 

minimum of f(2)+6 varies according to the interaction. Figure 3.11 is 

a plot of 9 . (9 where the minimum occurs) against the interaction 

function (1+p^^) (R=l). 

Figure 3.11 shows that a perturbation from the repulsive limit 

causes a minimum in the P(2)+0 verses 0 graph to occur close to 0=0.432. 

An analysis of the slope during the second stage (the slope is zero 

during the second stage in the repulsive limit for R=l) for a perturba

tion from the repulsive limit will now be given. This is motivated by 

a desire to do a similar analysis in the analogous 2-D case because 

of the significance of this quantity in surface applications (see 

Chapters four and six). 

The equation for d/d6 (f(2)+0) is 

mm 

d/d0(f(2)+0) = 
-2CP„/(2)+(l-P„^)f(3)3 

+ 1 -

Lp f(l)+2(p p _)f (2)+( l -2p_ +p, )f(3) 

(3 .22)  

For a perturbation 0<e=p^^/p^^«l during the second stage, since 

P(3)«e (from Equation 2.3, 

P(3)=exp{--^[2p^(pJ^-l)(l-q)+(2T^+ET^^)t]}) , (3 .23)  

Equation 3.22 reduces to 

d/d6(f(2)+0) = 1 - i+g(6) s(e) (3 .24)  



www.manaraa.com

mm 

Figure 3.11. Coverage where f(2)+6 is minimum (6 . ) as a function of 
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where g(e) = (J2f (1)/f (2)-l)e. To first order in e, g(6), evaluated 

using f(l) and f(2) from the repulsive limit, is positive. Using this 

expression for g(6) and e=0.01, Equation 3.24 is integrated for f(2)+9 

to obtain Figure 3.12. This analysis is consistent with Figure 3.11 

and the fact that only one minimum is obtained under these conditions. 

3.3. Correlation Functions 

For 1-D systems, two cluster correlation functions may be 

defined as 

c ( a — =  f ( o — ^ ' ) - f ( a ) f ( a ' )  ,  ( 3 . 2 5 )  

% 
where denotes Si consecutive unspecified sites. Exact expressions 

I Si Si 
for the three functions c(oo oo), c(oo o) and c(o o) are derived 

below for R=l, cooperative, irreversible processes using both z-trans-

form and recursive methods. The section ends by presenting expressions 

for the corresponding equilibrium correlation functions and comparing 

them with the irreversible results. 

3.3.1. Correlation functions for 1-D, R=1 irreversible processes 

For fixed configurations o and a', define 

C O  

f(a,a',z) = I z f(o o') (3.26) 
c=l 

so 

I  C  

=17—£ ^(o,a',z)|^_0 = ̂  0 dz z""f(0 ,a ' ,z )  , (3.27) 

dz •' 
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Figure 3.12. First term perturbation from the repulsive limit in 1-D (see text) 
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where the integration contour encloses the origin. In this treatment, 

at t=0 f(a o/)=l if a and a' are composed of only empty sites, and 

zero otherwise. 

Let m, and n denote blocks of consecutive empty sites, then 

d/dt f(m,n,z)+lla(t)+6(t)z]f(m,n,z)=Y(t)z+L6(t)+£(t)z]f(m-^^+1) , 

(3 .28)  

where m,n=l,2 (m>n) and the coefficients are implicitly dependent upon 

m and n (see Table 3.2). Integrating and applying the inverse trans

form (Equation 3.27) to Equation 3.28 yields 

t 

1+ ds e[A(s)+B(t)]2(Q)f(^+i){g(g)g[B(s) B(t)] 

s=0 

+E(s) +c(m n) (3 .29)  

where 

c(m-^)=e \ ds __i_ YCs^^LBis^-Bft ^ 
J 

s=0 

+ô(s) y [B(s)-B(t)]j [g(m&_ln+i)_f(m)f(n+l)] 

j=0 
jl 

+e(s) I  [B(s)^B(t)] [g(m^ckln+l)-f(m)f(n+1)] . 

k=0 

(3 .30)  

The f's appearing in Equations 3.29,30 are functions of s, 

t t 

A(t) = a(t)dt and B(t)= S(t)dt. The first term of Equation 3.29 is 

t=0 

just f(m)'f(n) 

t=0 
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Table 3.2. Expressions needed in Equations 3.28-3.30 

f (oo-^o) : A22([)=4Tg^C-2(l-pQ^) (q-1) 

(in=n=2) B22(t)=-2(l-p^^) (q-1) 

*22(c)=4?ox+2(Too-?ox)4 

622(c)=2(Too-?ox)q 

^22(:)=-2("oo-tox)f(2)4^ 

(S22(t)=0.0 

f(oo-^): A2i(c) = (2TQ^+T^^)c-(l-pQ^)(q-l) 

(m=2,n=l) B2^(t)=-(l-p^^)(q-1) 

«") •  AN(^ '2T%xt 

(m=n=l) B^^(t)=0.0 

®11 

Y^.(c)=-2qf(2)i:T^^-T^^+(T^.-2t^„+T^Jq: 

£jj^(t).-2[T_^^-T^+(T^^-2T^^+I^),: 
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From Table 3.2 and Equation 3.30, 

^-A(t)e-B(t) t 

c(oo-^o)= (ïlïyi I ®£-l^ Y(s)LB(s)-B(t)^ , 

s=0 
(3.31) 

I i 

where e = ^ . Examination of Equation 3.31 along with Table 3.2 

i=0 

shows that the dominant decay for this correlation function is , 

as &-K». 

£ 
The nature of the decay of c(oo o) is seen by substituting 

c(oo^ ^oo)=f(m^^-^+l)-f(m)f(n+1) and c(oo^ ̂  •^oo)=f(m^ ̂  ̂ n+l)-f(m)f(n+1) 

into Equation 3.30. Looking only at the term multiplied by ô(s), and 

using a(s)=B(s)-B(t) and a(t')=B(t')-B(s), gives 

e 
-A(s) 

(2-1)! 
t'=0 

-A(s) ^ , 

dt' Y(c')[a(c')+a(s)]*"l _ (3.32) 
(2-1)! 

The . is again dominant for this term (as well as for the first 

term). The last term is treated in a similar manner and a ^ , decay 

is found to dominate. 

J, 
The analysis of c(o o) is analogous to that outlined for 

c(oo o) and the same general decay behavior is found. All of these 

correlations, therefore, have a dominant , decay behavior which, 

as shown in the next subsection, is very different from the equilibrium 

decay. 
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£ 
An expression for f(oo oo) can also be obtained by a 

recursive method using the following definitions: 

X(£) = e 

% = I-PQX 

p = 1-q . 

2 
In terms of this notation f(2)=expC-2(T̂ ^t+Tip)3, f(4)=f(2)q -

exp[-2T -ôp-T t)] and 
ox 00 

X(0,  -  (1-P) '"  - • <3.33, 

Starting from the equation for d/dt f(oo ^ oo) it is found that 

d/dp x(&)  =  -2nx(&-l )  •  (3 .34)  

Equation 3.34 can be solved for 2=1 using Equation 3.33. The same 

equation for 1=2 can then be solved using the £=1 result. A general 

formula for x(~)> obtained by iteratively solving Equation 3.34. is 

X W  -  (-2np)' Î [ • (3-35) 

K—U 

2 
By comparison. Equation 3.29 for f(oo oo) has the form 

XC) . ̂-2nP.,(-2nA-l)^" f rp-p.jt-l . (3.36) 

p'=0 

The integral of Equation 3.36 is found in Reference 50 and corresponds 

to the sum in 3.35. 
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3.3.2. Correlation functions for 1-D, R=1 equilibrium processes 

The first order Markovian behavior of equilibrium conditional 

probabilities (any site, empty or full, will shield cooperative effects) 

for 1-D, R=1 processes will now be shown. 

Define y^=k^i+(_i)^i]=o,l for each site of a lattice having N 

total sites. If n is the number of occupied sites, then 

N 

I Y- = n . (3-37) 
i=l 

The grand partition function, in terms of the activity X=e^^ (y is the 

chemical potential) and the interaction between n.n. occupied pairs, 

0), is 

5 = ^ exp(-6w I  y . y . )  . (3.38) 

n=0 n.n. ^ 

Substituting Equation 3.37 into Equation 3.38 gives 

N 

= • =  I  e x p ( B p  I  y . - g w  I  Y - T - )  .  ( 3 . 3 9 )  

{a} i=l n.n. 

The probability of finding the lattice of N sites in configuration 

T = / rr 1 -î c 

N 

f(L.) = expCgv ^ Y^-Bw I Yj^YjV-
i=0 n.n. ^ 

= expCgy I Y^-gw I Y^Y.^expCgp T I y^Y-V-

iea n.n.ea ieZ-a n.n.eE-o+a 
— ^ ̂  ^ -~n.n. 

(3 .40)  
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where a is a subconfiguration of Z and a are the sites in a that 
— o w- —n.n. 

are n.n. to ̂ -o. Also, n.n.eo means to take all n.n. pairs completely 

within a. The probability f(a) is given by 

= I  f(z) 

{Z-o} 

expCBy I y.-gw I Y-y.] I expHBp l y. 

ieo n.n.EO {Z-o} ie{Z-a} 

-6w I T^Y-V= • (3.41) 

n.n.£{Z-a}+a 
— -^.n. 

A general conditional probability for the total lattice is 

expIlBy I  I  y^y.] 

fCyv icZ-o n.n.eZ-o+o 
Q(Z-G)[o] = = — 

I expCBy I y^-Bw I y^y.] 
{Z-a} ie{Z-a} n.n.e{Z-a}+a ^ ̂  
^ ̂ -Ti.n. 

(3 .42)  

which is independent of a (conditioning sites) except for those sites 

n.n. to (conditioned sites). The previously defined subconfigura

tion conditional probabilities (q) are trivially obtained from the 

total lattice conditional probabilities (Q). Furthermore, the result 

just obtained allows truncation of subconfiguration equilibrium 

conditional probabilities to single conditioning sites (e.g. qoCxoo]= 

qoLx]), thus establishing the first order Markovian behavior. 

The Markovian nature just discussed allows for a particularly 

I  
simple evaluation of f(o^ a^) as follows: 
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{Oil 

I f(0 )qa [a^]qa,Ca„]---qa [a ] 

{o } ® 

f(°f) .  
f g 

(3 .43)  

where the matrix ̂  is 

s = 
qoCo] qoCx] 

qxCo] qxCx] 

f( 2 ) / ( i -e)  Ci-e-f( 2 ) ] / ( i -e)  

Ci-e-f(2 ) ] /e  [ f(2 )+28-i] /e  
(3 .44)  

The eigenvalues and eigenvectors of g are 

A. = 1 

= 1 -
1-f(2)-9 
0(1-6) 

X? 
h 8/(1-8) 

1 

(3 .45)  

Since the probabilities of ̂  are bounded by zero and one, the trace of 

^ is between zero and two. This, and the fact that X^=l, shows that 

Working through the matrix algebra for the case at hand reveals 

tnat 

1 
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/ •  
x^(i-0)-X2(i-e) x^e+x^Ci-e) 

(3 .46)  

The correlation functions, obtained from Equations 3.43 and 3.46, are 

2 

c(o-^o)=f(l)X2'*"^e, c(oo—^)= c(o—and c(oo—^o)= (^^0)2 

£ 
c(o o) and f(2) can be obtained from Reference 51. 

3.3.3. Comparison of irreversible and equilibrium correlations 

It is now possible to compare the irreversible and lattice gas 

(Ising) correlations. Here the irreversible rates are assumed to be 

given by an Arrhenius form with pairwise activation energies which 

are chosen as the interaction energies in the equilibrium case. 

Figures 3.13-3.15 show corresponding irreversible and equilibrium plots 

a  z  S L  
for c(o o) , c(oo o) and c(oo oo) at 6=0.5. Figure 3.16 plots 

£ a  
c(o o) (irreversible)/c(o o) (equilibrium) against Z. 

The dominant irreversible . decay is much faster than the 
; 

Jl+1 
equilibrium X. decay. It should also be noted when comparing the 

irreversible and lattice gas models, that the irreversible process is 

not fully Markovian to any order. Further, a Markovian type truncation 

of irreversible equations (keeping a finite, arbitrarily high, number 

of conditioning sites) will never produce the correct asymptotic fast 

correlation decay. 
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Figure 3.13. Irreversible ( ) and equilibrium (----) plots 

£ 
of c(o o) as a function of & at 9=0.5 

I 
I 
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Figure 3.14. Irreversible ( ) and equilibrium (- - - -) plots 

c(oo oo) as a function of £ at 0=0.5 
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Figure 3.15. Irreversible ( ) and equilibrium (----) plots of 
jj 

c(oo——o) as a function of I at 6=0.5 
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Figure 3.16. Ratio of C(o o) irreversible and C(o o) reversible 

as a function of Si 
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3.4. Configurational Entropy of Ring Lattices 

The configurational entropy of a process on a finite lattice 

with only one kind of event is given by the grand canonical 

expression (47) 

N 

S = -K I I f({n}) , 
n=0 {n} 

(3 .47)  

where f({n}) is a total lattice probability with n occupied sites, {n}, 

and the rest of the lattice empty (N is the total number of sites). In 

this section, the configurational entropy for irreversible/equilibrium 

adatom distributions on five and six site ring lattices with n.n. 

cooperative effects/interactions will be treated. 

The equilibrium distribution is described by the lattice gas 

formalism previously introduced in Section 3.3.2 (cf.. Equation 3.40). 

When there are no cooperative effects (w=o), the familiar Langmuir 

result. 

S CO (Langmuir) = -NKC0 £n 6 + (1-8) Jin (1-9) J , (3 .48)  

is obtained. 

The irreversible kinetic equations for probabilities of configura

tions of the whole finite lattice are obtained from Equation 1.1 as 

d/dt f({n}) = I T j f({n}-j) -

je{n} -
a .=x 
J 

1 
j={n} 

a .=0 
2 

a J 
f({n}) (3 .49)  

where {n}-j indicates that occupied site j is removed from the set {n}. 
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For five/six site ring systems, there are eight/thirteen independent 

equations respectively. 

The five site ring lattice is now discussed. For this system, the 

equilibrium and irreversible entropy equations are the same in Che 

repulsive limit (see Reference 47 for equilibrium equations cast in a 

similar form to Equation 3.49). This is due to the limited number of 

configurations in the five site ring system. Away from the repulsive 

limit, however, the equations differ. Figure 3.17 shows S/K verses 0 

both in the limit and slightly off of the limit (p^^=0.01). The 

interesting structure can be explained by considering the process as 

occurring in stages. Initially, only the empty lattice exists and the 

entropy is zero. During the first stage, eleven configurations contribute 

to the entropy (one empty, five with one full site and five with two 

separated full sites). At the first peak, the ensemble weight is most 

randomly distributed between these eleven possibilities. Toward the end 

of the stage, those configurations with two separated full sites are 

dominant and only those configurations are left at the ead of the stage. 

The entropy is nonzero at the end of the first stage since five possible 

configurations still exist. During the second stage, ten configurations 

exist (five with two separated full sites and five with three nonconsecu-

tive full sites). The ensemble weight is most randomly distributed at 

the second peak of Figure 3.17 and at the end of this stage only the 

five configurations with three full sites exist. During the last stage, 

eleven configurations are possible (five with three nonconsecutive full 

sites, five with four full sites and one with five full sites). As in 
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Figure 3.17. Irreversible ( - ) and equilibrium (----) configurational entropy 

for a five site ring lattice when Pox=0.01. The solid curve is for both 

the irreversible and equilibrium entropy in the n.n. repulsive limit 
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the other stages a maximum occurs when the configurations are most 

random, but at the end of this stage only the configuration with five 

full sites remains and the entropy is zero. 

The entropy for a five site lattice away from the repulsive limit, 

as well as the Langmuir case, is shown in Figure 3.18. The trajectories 

going from the equilibrium curve to the irreversible curve are obtained 

by using the equilibrium values at the indicated 9 as initial values in 

the irreversible equations. 

The filling in stages of a six site ring lattice is now treated. 

For the irreversible process, on this lattice there are eighteen possible 

configurations during the first stage with five of them remaining at the 

end of the stage (see Table 3.3). During the second stage, twenty con

figurations are possible with eleven remaining at the end of the stage. 

Note that more configurations are possible at the end of this stage than 

at the beginning of this stage. During the last stage, eighteen configura

tions are possible with only one (all sites full) remaining at the end of 

the stage. For an equilibrium process, only one minimum entropy occurs 

for 0<6<1 at 6=0.5 (when every second site is full). Figure 3.19 is a 

graph of S/K verses 6 for a six site ring lattice staged filling process. 

The low values for S/K during the second stage of the irreversible 

process are found since relatively few configurations effectively con

tribute to the ensemble. 

The six site ring lattice is a prototype for larger lattices. The 

irreversible process will occur in three stages (with the minimums in 

l-e~2 l+e~2 
the limiting cases occurring at 6-—^— and 6-—^—> corresponding to 
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0 

Figure 3.18. ConfiguraUional entropy for irreversible ( ), equilibrium ( ) and random 

filling ( ) of a five site ring lattice (pox=0*078). Trajectories going from 

the equilibrium curve l;o the irreversible curve ( ) are obtained by using the 

equilibrium values at the indicated 0 as initial values in the irreversible equations 
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Figure 3.19. Irreversible ( ) and equilibrium ( ) confIgurational entropy for a six 

site ring lattice in the n.n. repulsive limit 
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Table 3.3. Number of configurations for staged filling of a six 

site ring lattice 

First stage: 

O  X  X  X  X  

0 0  0 0  0 0  0 0  o  0  

o  O  0 0  x o  o o  X X  

o  o  o  X  o  

1 + 6 + 6 + 3 + 2 =  1 8  c o n f i g u r a t i o n s  

Initial/maximum/final number of configurations = 1/18/5 

Second stage: 

X  X  X  X  X  
oo 00 xo X X  xo 
X X  00 00 oo ox 

O  X  X  X  X  

2 + 3 + 1 2 + 6 + 3 =  2 6  c o n f i g u r a t i o n s  

Initial/maximum/final number of configurations = 5/26/11 

Third stage: 

X  X  X  X  x  

o o  X X  X O X O  X X  

X X  0 0  O X X X  X X  

O  X  X  X  X  

2 + 6 + 3 + 6 + 1 =  1 8  c o n f i g u r a t i o n s  

Initial/maximum/final number of configurations = 11/18/1 
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Che three stages of filling described for 1-D, R=1 highly repulsive n.n. 

cooperative effects) with the second stage asymmetric due to the larger 

number of configurations at the end of the stage than at the beginning 

of the stage for n.n. inhibitory processes. The equilibrium entropy will 

have one minimum when every second lattice site is full (6=0.5). 

3.5. Processes with Competing Events 

Surface adsorption processes are often complicated by adsorbent 

impurities that compete for binding sites. Substituents on polymer 

chains can undergo side reactions which compete with the one of interest. 

To describe these processes, which have more than one kind of event 

occurring simultaneously, requires an extension of the kinetic models 

previously discussed. 

For single species adsorption (surface terminology will be used 

here, but the theory applies to any process with competing events) in 

l-D and for R=1 only one conditional probability, qoCoo]=expC-T^^^t], 

is required to truncate the hierarchy of kinetic equations as shown in 

Section 2.1. For competing events, the situation is more complex. 

Suppose, for example, that N species, i=l,2,'*',N, adsorb. Let 

be the rate of species i landing between two empty sites, be 

the rate of species i landing between an empty site and a site occupied 

by species j and xj". be the rate of species i landing on an empty site 
K.J 

flanked by species k on the left and species j on the right. Then, 

" • X 'w 1—1 
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is the rate for any species landing on site flanked by species k on 

the left and species j on the right. Note that the relative amounts 

of each species in the source density are incorporated into the rate. 

After application of the shielding condition, the equations for the 

minimal set of conditional probabilities are 

d/dt Jin qoCoo] = -x (3.51) 
oo 

and 

N N 

d/dt qiCoo] = 7 (x „-x .)qi[oo]q&[oo] + J x, qkCooOqoCoo] . 
1=0 k=0 ko 

(3.52) 

The N independent, closed, coupled differential equations can be 

simultaneously solved for the conditional probabilities. 

As t-x», d/dt qiCool+0 and qoCoo]-»-0. Further, from conservation 

of probability, qiCoolfO for at least one i (say i*) which implies 

N 

0 = V (x^^-x^^*)qi*[oo]q&[oo], t-^ . (3.53) 

2=0 "" 

For example, suppose only two species, a and b, are present and that 

qaLooJfO. Then, the t-K= limit of Equation 3.52 gives 

0 = (x^^-Xgg^qaCooDqbCoo] . (3.54) 

When qb[oo]=0 and qa[oo]=l, since at t-«° qa[oo]+qb[oo]=l. 

The conditional probability that goes to one (assumed to be qaCoo] 

above) is determined by the relative magnitudes of and x^^. The 

rate d/dt qaCoo] is strictly positive and hence qaCool+1 if 
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as can be seen from the form of the right hand side of Equation 3.52. 

Another solution is possible if t  =t  , . In this case, the conditional 
oa ob 

probabilities range between zero and one (always summing, of course, 

to unity). All values in the range are possible and depend on the 

rates other than x = T  ,  .  
oa ob 

The number of rates needed to describe 1-D n.n. cooperative 

processes (assuming reflection symmetry) is ̂  N(N+l)(N+2). Thus, a 

wide range of choices is possible (e.g., a two-event system requires 

twelve rates to be specified). Figure 3.20 shows a few selected 

probabilities as a function of coverage for a two-event system where 

the rates for landing next to species b are moderately inhibitory and 

those for landing next to species a are twice as inhibitory. These 

were obtained by solving the closed set of equations for f(o), f(oo), 

f(ao), f(aoo), f(aoa), qoCoo] and qaCoo]. 

The effect of systematically varying the rates of adsorption 

for species b relative to species a in a two species system is shown 

lu Fl%ucc 3.21. Tlic plot labeled £=1 is obtained by choosing a basis 

set of rates. The other plots are then obtained by multiplying all 

of the rates for species b landing a factor e. When e>l the rate of 

species b landing is enhanced and when £<1 the rate of species b 

landing is decreased. 

Competitive binding of ligands having various lengths k can also 

be exactly solved. Epstein (39) has previously discussed the case 

illustrated in Figure 3.22. 
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q aCoo] 

Figure 3.20. Selected probabilities as a function of 0 for a two-event system. The rates are 
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P(b) 

0.6 

0.4 

0 . 2  

i ^ 
/I 

/ i  

, ( 
' E :=200 / ' 

/ / I / £=20 / / 

/ / 
^ / £=5 

/ 
/ 

/.,/ 

/ 

J 

Physical Trajectory 

£=0.01 

0.0 0 . 2  0.4 0.6 

P(a) 

0.8  1 . 0  

Figure 3.21. Systematic variation of the rates of adsorption for 

species b relative to species a in a two species system. 

The rates are: T^=l, 1^=10 t/'=0.1, t =10 
00 ' ao ' bo aa 

=0.8, 1^=10"^, T =0.l£, T =0.3£, T, =10~'^e, 
DD ao oo ao bo 

T D=o.8£, TJ'=10~^E, T ̂ =10~^E 
aa bb ab 



www.manaraa.com

81 

I 1 \ 1 1 I—I 1 I—1 i—I 

I I I I I 1 1 1 1 1 1 I 1 I I 1 1 

Figure 3.22. Competitive binding of dimer and trimer ligands 

N ^ 

In general, qoCn ]=expC-t ^ T ] where n is the length of the 
^ k=l °° ^ 

longest ligand and is the rate of an n^-mer (n^ is the length 

of the kth ligand) landing between two empty sites. Kinetic equa

tions for f(i) in the following blocks of i consecutive empty sites 

are of generic form: £=1,1 < £ <n̂  ,n̂  < X. ̂ n̂  ,n̂  < Jl <n̂ , • • • ,n̂  < J!. 

where n^,n2,*»»,n^ are in order of increasing ligand lengths. This 

hierarchy of equations can be closed by using qoCn^] to truncate. 

3.6. Periodic Lattices 

To model copolymer systems (35-38) one must consider lattices 

with periodic distributions of sites. The kinetic equations for 

periodic lattices car. be written by generalising Section 2.1 to 

introduce site dependent rates and probabilities. A similar, but 

somewhat more complex, treatment could be given for stochastic lattices. 

For a system with n.n. cooperative effects on a lattice of alter

nating sites (A and B) where only one event can occur on each type of 

A B A B A . B . . , . 
site the rates x , x , x , x , x and x are neeaea itne super-

O O  0 0  o x  o x '  X X  X X  

script indicates the kind of site being landed on). If the A and B 

rates are equal, the process will obviously be identical to that 

described in Section 2.2. If the B rates all equal zero, the lattice 

will fill randomly on A sites. 
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The minimal set of probabilities with closed coupled equations 

for this case is f(o), f(o), f(oo), qoCoo] and qoCoo]. Figure 3.23 

is a graph of f(oo) against 6 , the coverage of type A sites. There 

the rates for landing on an A site are for highly inhibitory n.n. 

cooperative effects. Those for landing on a B site are obtained from 

the above rates by multiplying by a factor e which ranges from zero 

(random adsorption on A sites) to five (landing on B sites highly 

favored). When £=1, the sites are equivalent and filling in stages is 

observed as previously (cf.. Sections 3.1 and 3.2). For other values 

of £, the lattice still fills in stages, but d/d9^ f(oo) is shifted 

according to the relative rates. 

B A 
Figure 3.24 plots 0 against 6 where, for e=l, a filled B site 

slightly inhibits occupation of n.n. A sites, but one full n.n. A 

site greatly inhibits occupation of the B site and two n.n. full sites 

block occupation of a B site. Other plots are obtained by multiplying 

the rates of landing on A sites by a factor e, 0 ̂ E 4 2. 

3.7. Limited Mobility 

This section will treat dissociative adsorption of hcmonuclsar 

diatomic molecules where the dissociated adatoms are allowed limited 

mobility before they become permanently affixed. In this model, it is 

assumed that adatoms initially landing on sites i and i+1 immobily 

occupy sites -m+i and m'+i+l, where ^-m<m'+l4k+l. Here H and k 

are fixed, nonnegative numbers and the sites between -m+i and m'+i+l 

are empty before the adsorption event. The maximum number of fixed 
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.0 

8 

. 6  

e=0 

0.4 

£=1 

£=2 

£=5 

0 . 2  

0 . 8  1.0 0 . 6  0 . 2  0.4 0.0 

Figure 3.23. f(oo) as a function of 6 ^  for T "=1, T ^ = E ,  T ^=0.01, 
O O  o o  o x  

T =0.0l£, T  =0.0001 and T  =0.000l£ 
ox X X  X X  
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.0 

e=l/16 

E=l/8 

. 8  
e=l/4 

£=1/2 

0 . 6  

£=I 

.4 

e=2 

. 2  

0 0 . 2  0.4 0. 6 0 . 8  1.0 
.A 

figure 3.24. Coverage of B sizes, 0^, as a function of the coverage of 

A sites, e^. The rates are: T  ̂  =1.0, T ^ = E ,  T ®=0.01, 
A B A oo ' xo ' 

'L'"-'"-
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lattice spacing between the immobile adatoms is, therefore, d=&+k+l. 

More complicated processes are possible, but will not be treated here. 

In general, the conditions on the cooperativity for exact solvability 

are the same as for the 1-D monomer problem (the max separation, d, 

allowed between adatoms is arbitrary). The present treatment will 

describe in detail the case where r=0, R=1 and d=2, with the extra 

restriction that m,m'=0 or 1. An initially empty lattice is also 

assumed. 

The kinetic equations for this process are written in the usual 

way. For example, letting h denote the states of sites i-2 and i-1 

as a= - X, 6=xo or Y=OO and h' denote the sites i+2 and i+3 as a'=x-, 

B'=ox or Y'=00 yields 

-d/dt f(n) = ^f (o(foooo'--o) + ^f (xSooo** «o) 

+ ' n) ̂ ̂  (xooc^-• • o) + ••• + (o* •' O O O *  • «o) 

+ (o* • •ooo'•'o) + ••• (3.53) 

J,, 

where m,m'=0,l is the number of lattice spaces moved to the left (m) 

and to the right (m') and the functions g^^'^,v(n) as well as the rates, 
(,m,m ) 

are given in Table 3.4. As an example of the rates for this 
(m,m') 

C  Y  " Y  ̂  ^  
problem, =T(000000) is the rate of a dimer landing in the center 

of six empty sites and ending in the configuration 00x0x0. A generic 
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Table 3.4. Equations for limited mobility when d=l (see text). The notation for 

probabilities of n consecutive empty sites is f^=f(n) 

ConftSWaUon 

'(5:ï)' 4t^ 4fj+£, 3f^+£j,+2t^ 

'(5:2? °°S5o. 2f^ 3£, «J 3Ej+2t, 

xoSg-oo 2(f3-f^) «(fj-tj) 

'(S:5j' »»°°°» 2(^5-^6' ^"5-^6' 2^5-^6-^7 

""'"o" 2(£3-f5) 3(£3-£(_) 3(£3-£,) 

'«:?? 2(f^-2f3-l-f^) 3(f4-2£5+f^) 2(£^-2f3+fj) 

'<o:o!' -SS.X '"«-2V6> 3(f^-2t5+f^) 2(£^-2£5+E^) 

''°°°° ^(£^-£3) 3(£^-f3) ^ U - h - h  h - ' y  

f,-£^ 

00 
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Table 3.4. (Continued) 

confi.ura.ion 

xgg'ox 2(̂ .,-2ê -̂ ^̂ ) 2(f3-2t̂ +f5) 0 

,<°;5;> K§§OK 2(f3-2f,-rt3) 2(f3-2t^+E5) 0 

xSëx 2(f,-2f3.KE,) t2-2f3+£4 0 0 
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equation can be written for n^4 which establishes a shielding 

condition, giving qoCn]=qoC5]=q=exp{-CT^Q'Q^and a closed 

set of equations using f(n)=q^ ^f(5), n^5. 

A highly repulsive interaction between dissociated adatoms, which 

causes filling in stages, is of particular interest and will now be 

treated. 

During the first stage of filling (0<8<8*(1)), no n.n. pairs are 

Cy y ' " )  
formed. Only the terms multiplied by and contribute 

to the kinetic equations. At 9=0 (t=0) 

d/de f(n) = , n>2 (3.57) 

and at the end of this stage f(n)=0, n^5. The equation for f(5) is 

4 3 r 

f(5) = q*^® expC-(l-p^) —^ - 2 1 — ( 3 . 5 8 )  

r=l 

where Po=T(o;I))/ 

For the special case when P_=l, the result q=qc[4] is also obtained 

and 

d/dq 6 = -2f(4) . (3.59) 

Using Equation 3.58 in this special case, one obtains 

3 r 
Ç  t  / t \  —  f / Q \ / m ~ o"vT->r__0 \ ' 1 ^ *5 AO^ — \ -r/ ^ \ ^ ^ \ V / 

r=l ^ 

Equation 3.59 can now be integrated using q(6=0)=l and q->-0 as 6^0*(1) 

to give 
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^ 3 
3*(1) = 2 expC-2 I ^^]clq = 0.402 (3.61) 

q=0 ^=1 

which is two-thirds of the saturation value for a nondissociative 

trimer with n.n. blocking (or, equivalently, one-half the saturation 

value for a nondissociative 4-mer adsorption process). 

During the second stage of filling (e*(l)<0<0*(2)), one n.n. 

CY Y '  ̂ 
pair is formed. The relevant terms are those multiplied by , 

•'(o:??' "(o:o)' '(0:1)' 

rates). The terms with larger rates are multiplied by probabilities 

that have gone to zero. The equations for this stage are 

d/d0 f(2) = -3/2 

d/de f(3) = -1 
(3.62) 

d/de f(4) = -1/2 

d/dB f(n) = 0 , n^5 . 

At the end of this stage, f(n)=0, n^4. The second break can be 

determined since f(4)->-0 as 0-^0*(2) and is 

G*(2) = e*(l) + 2 = 0.453 . (3.63) 

During the third stage of filling (0*(2)^0^0*(3)) , two n.n. pairs 

are formed. The relevant rates are ^(o'o)^ (and 

symmetry related rates) . The equations become 
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Figure 3.25. Selected functions for a dissociative dimer with limited mobility in the staged 

filling limit 
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d/de f(2) = -1 

d/de f(3) = -1/2 (3.64) 

d/d0 f(n) = 0 , n^4 

and f(3)^ as 9-»-0*(3). The third break is given by 

e*(3) = 8*(2) + 2 = 8*(2) + 2[f(3)|g*(i)-2f(4)|Q*(i)] 

= 0.523 . (3.65) 

During the fourth or last stage (0*(3) ̂ 6^0*(4)), every event 

creates three n.n. pairs and only terms are significant. At 

the end of this stage, the lattice will have only single empty sites 

remaining. The equations are 

d/d0 f(2) = -1/2 

(3.66) 

d/d0 f (n) = 0 , n^ 3 

and f(2)->0 as 0->9*(4) . The break is found at 

8*(4) = 8*(3) + 2 f(2)|g*.2) = 0.623 . (3.67) 

Figure 3.25 shows the behavior of some functions in the staged 

filling process. Notice the inherent asymmetry of f(2)+0. 

3.8. Approximate Solutions for R=2 

In this section, we will discuss the equations for general second 

n.n. cooperative effects as an example of a hierarchy of equations that 
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is not exactly soluble. The treatment yields approximate subconfigura

tion probabilities which can be compared, in certain limits, with exact 

results. Thus, an estimate of the effectiveness of the approximations 

can be gauged. 

Assuming reflection symmetry, ten rates are needed to describe a 

general process where first and second n.n. cooperative effects exist. 

They are x ,, where '=xx,xo,ox,oo. 

The corresponding rate equations are quite complex and will not 

be written explicitly. For example, Equation 2.8 for f(o) includes 

the probabilities f(oo), f(o_o), f(ooo), f(o_oo), f(o_o_o), f(oooo), 

f(o_ooo) and f(00000). The appearance of unspecified gaps means that 

exact truncation is not possible. 

The following method is used to obtain a closed set of equations: 

(1) Enumerate a core set of probabilities. These should include 

all those appearing in the f(o) equation. Here we choose all possible 

configurations of empty and unspecified states along five consecutive 

sites. 

(2) Write kinetic equations for the core set of probabilities. 

(3) Factor new probabilities. Probabilities not contained in 

the core set appear in these kinetic equations. These new probabilities 

are factored into products of the original probabilities and conditional 

probabilities with a single conditioning site at one end using the 

following rules: 
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(a) If possible create a product of one of the original 

probabilities and a single conditional probability (of the 

type described above). 

(b) If rule (a) cannot be implemented or is ambiguous, 

factor out the conditional probability with the most consecu

tive empty sites adjacent to the conditioned site. Then 

return to rule (a) to factorize the remaining probability 

(e.g., f(o_oo_o) =f(o_oo)qo[_oo_o] and f(ooo_oo)=f(oo_oo) 

qoCoo_oo]). 

(4) Truncate to nth order. An nth order Markovian truncation is 

performed on the conditional probabilities. (This section will treat 

the 3rd, 4th and 5th order cases.) 

(5) Write kinetic equations- for the conditional probabilities. 

Kinetic equations are written in the form 

d/dt qoCg] = Cd/dt f(oa)-qoCa] d/dt f(a)]/f(a) . (3.68) 

New probabilities are factorized according Co the rules in (3). New 

conditional probabilities are truncated and have equations written in 

the same manner. 

It should be noted that this choice of approximate equations is 

only one of many. Another approach that could be used here deals 

directly with the q-hierarchy. (This approach is demonstrated in the 

next chapter for a 2-D example.) 
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It can be shown that for n>4, in the n.n. blocking limit, the 

exact results are recovered for f(o), f(oo), f(ooo), f(oooo), 

f(ooooo)=qf(oooo) (where q=qoCoooo] and the exact shielding result 

for this process has been employed) and f(o_o) (and thus, f(x), f(xx) 

and f(x_x) also). Some specific examples will now be considered: 

(1) No n.n. cooperative effect, attractive second n.n. 

Figures 3.26-3.29 show the results for f(xx) and f(x_x) when nearest 

neighbors have no cooperative effects, but the second n.n. ranges 

from slightly attractive to very attractive, thus enhancing the 

propensity for ooxoxoxoxoo type clustering (island formation). The 

rates are chosen so that each reacted first/second n.n. changes 

2 
t  by a factor of a/3, respectively (e.g., t  t  ) .  

oo 'oo  ^ > r  j  \  b  •> xo-xx oo 'oo  

(2) Repulsive n.n., attractive second n.n. Figures 3.30-3.33 

show the results for f(xx) and f(x_x) when a=h and Kp <800. As 

expected, when the second n.n. attraction increases the value of 

f(xx) remains relatively small until 6>0.5. The three-lattice vector 

truncation increasingly deviates from the four and five-lattice vector 

truncations as the second n.n. attractiveness increases. 

Figure 3.34 shows the variation of f(x_x) going from a slightly 

repulsive n.n. to blocking n.n. (04a<l) when 3=2 in the four site 

truncation. The n.n. blocking problem has previously been exactly 

solved (cf.. Section 3.1). This figure illustrates convergence of 

the four site truncation approximate equations to the exact result 

as the n.n. repulsiveness goes to infinity. 
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Figure 3.26. The probabilities f(x_x) ( ) and f(xx) ( ) as a 

function of 9 for a=l and 5=2 in the three, four and 

five site truncations 
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Figure 3.27. The probabilities f(x_x) ( ) and f(xx) ( ) as 

a function of 9 for a=l and B=5 in the three, four and 

five site truncations 
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Figure 3.28. The probabilicies f(x_x) ( ) and f(xx) ( ) as a 

function of 8 for a=l and 6=10 in the three, four and 

five site truncations 
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Figure 3.29. The probabilities f(x_x) ( ) and f(xx) ( ) as a 

function of 6 for a=l and 3=100 in the four and five site 

truncations. The dashed line ( ) is f(xx) in the three 

site truncation 
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gure 3.30. The probabilities f(x_x) ( ) and f(xx) ( ) as 

function of 0 for a=% and 6=2 in the three, four and 

five site truncations 
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gure 3.31. The probabilities f(x_x) ( ) and f(xx) ( ) as 

function of 6 for a=% and 3=5 in the three, four and 

five site truncations 
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Figure 3.32. The probabilities f(x_x) ( ) and f(xx) ( ) as a 

function of 6 for a=h and 5=10 in the three, four and 

five site truncations 
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Figure 3.33. The probabilities f(x_x) ( ) and f(xx) ( ) as a 

function of G for a=% and 3=100 in the four and five site 

truncations. The dashed line ( ) is f(xx) in the three 

site truncation 
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Figure 3.34. Variation of f(x_x) with a in the four site truncation. In the figure a=l/2(— —), 

_l/5(— - —), 1/10(— - - —) and 1/100( ). The solid curve is also the exact 

plot; for n.n. blocking 



www.manaraa.com

104 

(3) Repulsive n.n., repulsive second n.n. For this example, 

consider a process where ''ox.xo'=''x.% 

and X »  t  »  t  »  t  »  t  . This choice of rates 
0 0 " 0 0  o o - o x  x o - o x  x * 0  x x  

causes filling in stages (cf., Section 3.2). For illustration 

purposes, the behavior of qoC_oooD with respect to 9 will be examined. 

This conditional probability changes dramatically with 6 and is thus 

a good test of the approximate equations. 

From previous analysis of filling in stages, it was found that 

qoC-ooo] has a complicated 6 dependence during the first two slopes, 

is equal to one during the third stage, and is piecewise linear during 

the last two stages. The plot is given in Figure 3.29. The four and 

five site approximations when the rates are close to the limit and 

when the rates are separated by one order of magnitude (x =1, 
oo • oo 

t =0.1, etc.) are also shown. The rates close to the limit only 
CO'ox 

allow integration through the first two stages, where the five site 

approximation lies along the exact curve (not shown) and the four site 

probability is not in the set that reduces to the exact result in the 

limit.) The four site approximation also predicts qoII_ooo]>1 during 

Che third stage. IVhen the repulsiveness is relaxed to an order of 

magnitude difference, the plots retain the same general form. 

One deficiency of these approximate equations is their inability 

to integrate to 6=1. This is in part due to the form of Equation 3.68 

incorporating division by probabilities. If the denominator of 

Equation 3.68 goes to zero faster than the numerator, the derivative 
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will become very large. There is, however, a more fundamental 

potential cause of bad behavior. This is shown by the fifth stage 

equation for qo[_o_o], which is 

d/d9 &n qoC 00]=- ̂  ̂  q o ^ — O — O — o 3  ^ (3.69) 
p(l; 

If the approximate equations give qoC_o_o_o] greater than 0.5 at 

the end of the fourth stage, the value of qoC_o_o] will increase 

(see Equation 3.69) rather than go to zero. This last difficulty 

manifests itself in the 2-D approximate equations. 



www.manaraa.com

106 

4. THE 2-D SQUARE LATTICE 

Hierarchy equations for 2-D square lattice probabilities are 

obtained from Equation 2.12. For the purposes of this chapter, it 

is desirable to extract from these a closed subset of equations for 

conditional probabilities with only one unoccupied conditioned site 

(.i.e., qoC^]). This can be accomplished, nonuniquely, by factorizing 

the conditional probabilities appearing on the right hand side of the 

d/dt £n qoCo] equation that have more than one conditioned site into 

products of conditional probabilities with only one conditioned site. 

For example. 

where o indicates a conditioned site and (p indicates a conditioning 

site. The order of factorization is important because it influences 

the number of equations needed to close the set upon truncation. The 

least number of equations will be generated by consistently choosing 

the conditioned site with the smallest number of surrounding condi

tioning sites as the first (single) conditioned site. If more than 

one conditioned site has the same number of surrounding conditioning 

sites, a consistent ordering is chosen and has been coded into the 

computer program used to derive the equations of this chapter (see 

Section 4.1). 

In order to get a closed set of equations it is necessary to 

truncate the conditional probabilities. Two methods of truncation 
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have been developed. Method A first factorizes and then truncates 

conditioning sites more than a specified distance (calculated along 

the lattice) from the (single) conditioned site. Method B truncates 

conditioning sites beyond a specified distance from any conditioned 

site before factorizing. For example, using method A 

= q q 0 (4.2) 

where a two lattice vector truncation has been employed. Applying 

method B to the same conditional probability gives 

I- , "I r 1 
q 066 ^ q = q (4.3) 

again for a two lattice vector truncation. It is clear that method B 

is a more severe truncation. 

1 2 
As a shorthand notation, let C (for cross) represent R =R =1 

cooperative effects and D (for diagonal) represent R^=/2 cooperative 

effects (having six and 51 rates, respectively, when reflection and 

rocacion symmetry xa - oee rj.gui'e x. / for a diagram of these 

cooperative ranges. The approximations to be considered in this 

chapter are CA2, CB2, CB3 and DB2 where the last integer represents 

the order of the truncation. 

It is a relatively easy task to write the closed coupled set of 

conditional probability equations for the CB2/CA2 cases by hand. 

There are eight/nine conditional probabilities generated. They are 
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=f(i), q 

-e
-

o 

0(f) oôé • A ' -e
-

o , q , q , q 0# , q , (and q 

for CA2 only). For the CB3 case, however, there are 128 conditional 

probabilities generated. These are listed in Appendix A. It is, 

therefore, useful to explore alternatives to writing these equations 

by hand. The next section will describe a way to generate these sets 

of equations using the computer. The last section of this chapter 

will present some results from integration of the approximate 

equations. 

4.1. Computer Generation of Kinetic Equations 

For any given conditional probability, the general procedure for 

obtaining approximate 2-D equations from 

d/dt in qoCo] = - I I 1 A qo^Coo] +11 t  j q (4.4) 

(see Equation 2.12) is to choose a site of interest (j), sum over all 

possible configurations within the cooperative range of i. and then 

convert to conditional probabilities with a single empty conditioned 

site. 

This procedure is amenable to computer techniques. The major 

tasks the computer must perform are: 

(1) uniquely label eacli qoCo^j and Tqj . A square grid is used 

to individually label each qo(a) and x^j (see below). 
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(2) Identify specified sites. Each site of the configuration 

is given two coordinates to identify its position on a square grid. 

This facilitates truncation and identification of the condition of 

surrounding lattice sites. 

(3) Identify unspecified sites. Unspecified sites within the 

cooperative range of the site of interest must be identified and then 

various empty/full configurations of these sites must be generated. 

(4) Transform to empty configurations and factorize/truncate. 

It is necessary to transform conditional probabilities with full 

conditioned sites to have only empty conditioned sites and then employ 

the desired truncation/factorization procedure. 

(5) Write equations. Rates and conditional probabilities must 

be combined and written as the desired kinetic equation. 

A program has been written to perform these tasks. It is 

currently operational for generating equations in the CA2, CA3, CB2, 

C33, DA2, DA3, and DB3 cases, but may be extended to other cases with 

relatively slight modification. 

As an example of the novel methods used in this program, we 

illustrate the numerical representation of conditional probabilities 

and the factorization procedure. One way to uniquely identify a 

conditional probability is to define a seven by seven square grid 

with each row of the grid identifying a number 2^, i=l,2,3,..., going 

from bottom to top and each column representing (from right to left) 

tens, hundreds, ten thousands, etc. See Figure 4.1. 
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12 08 00 

Figure 4.1. Numerical representation of conditional probabilities 
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One first places the configuration oC^D on the grid so the site o 

is at the center position. Then each conditioning site ((})) is given 

a value corresponding to the row where it resides. A number labeling 

qoCcJ is obtained by summing the columns and treating the resultant 

string of numbers along the bottom as one number. The configuration 

=120800. Since reflection and rotation symmetry 

are assumed in this work, other numbers could be given for the same 

in tigure 4.1 xs q $ 

conditional probability (e.g., q =240800). A consistent representa

tion is obtained if the smallest possible number is always chosen. 

Factorization of conditional probabilities with more than one 

conditioned site into products of conditional probabilities with single 

conditioned sites can often be accomplished in more than one way as 

previously discussed. The computer program consistently orders which 

conditioned site is taken first for factorization. These are grouped 

according to the number of surrounding conditioning sites and those 

with the least chosen first. To determine the somewhat arbitrary order 

within each group, the following procedure is implemented. The configu

ration is placed on a square grid with the site of interest at the 

conter. Each orientation is labeled using conditioning sites exactly 

as above. The one with the minimum label is chosen. Then the 

conditioned sites (with the same number of surrounding conditioning 

sites) are chosen beginning with the site in the rightmost column 

closest to the bottom of the grid. Conditioned sites are then taken 

in order going up that column. Conditioned sites (if any) in the 
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next column to the left are then taken in order from bottom to top. 

This is continued until all conditioned sites have been used. For 

example, qlo8$(i>| is oriented and factored as follows: 

0 . = q (4.5) 

The other tasks have also been accomplished in one or more of 

the 17 different program procedures (subroutines) that have been 

written. Table 4.1 is the computer generated equation for d/dt q^^$ 

in the CA2 case. 

f c  

4.2. Results 

Closed sets of equations have been generated for the CA2, CB2, 

CB3 and DB2 cases. The sets contain nine, eight, 128 and 14 equations 

respectively. As mentioned previously, the number of equations depends 

on the factorization scheme employed. For example, the CA2 case was 

factorized, beginning with the conditioned site having the most sur-

rouiiding conditioning sites, and ever 70 equations ('.•:ith rr.crs to be 

derived) resulted. This section will now consider several choices of 

rates for the CA2 and CB3 approximations which illustrate different 

processes that can occur on a 2-D square lattice. 

f o O  X  1 0 ̂  2  [ X  1 3 [ X  ^ 4 
T 0*0 = 1, T O ' X  =a, T O ' X  = T X ' X  =a , Tix'X = A  ,  T  X ' X  =a 

I o o 0 0 1 0 1 X 

A natural way to choose the rates is in a pairwise additive Arrhenius 

form. Truncated equations recover exact results for the random case 

when a=l. Figure 4.2 shows f(oo) as a function of 6 for 0.2^a^6.0. 
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06 
Y (YD0T(3)) in the Table 4.1. Computer generated equation for d/dt q 

CA2 approximation. The conditional probabilities and rates 

are kept in the arrays Q(I) , 1 K I ̂  9, and R(J) , 1^J^6, 

respectively. The intermediate arrays AA(k), BB(k) and 

CC(k) are individually summed and then combined to give the 

final equation 

AA(1) = RE*Q(4)*Q(5)-R(2)*(Q(4)*Q(S)-Q(4))*2 + R(3)*(Q(4)*Q(5)-Q(4 

C)"2 +1) 
AA(2) = -R(4)*(Q(3)*Q(4)-Q(6)-Q(8)*Q(4)*Q(5) + Q(8)*Q(4)) + R(5)*( 

CQ(3)*Q(4)-Q(3)-Q(6)-Q(8)*Q(4)*Q(5) + Q(8)*Q(4)*2-Q(8) + 1) + Q(8)* 

CRE*Q(4)*Q(5) + R(2)*(Q(3)*Q(4)-Q(8)*Q(4)*Q(5))-R(2)*(Q(8)*Q(4)*Q(5 

C)-Q(81*Q(4))*2-R(3)*(q(3)*Q(4)-Q(3)-Q(8)*Q(4)*Q(5) + Q(8)*Q(4)) + 

CR(3)*(:Q(8)*Q(4)*Q(5)-Q(8)*Q(4)*2 + Q(8)) 

11 = 2 

A=O.DO 

DO 8 1=1,11 

A=A+AA(I) 

8 CONTINUE 
BB(1) = Q(3)"RE"Q(4)--^Q(5) + R(4)*(Q(3)*Q(4)*Q(5)-Q(3)*Q(4)*2 + Q(6 

C))-R(5)*(Q(3)*Q(4)*Q(5)-Q(3)*Q(4)*3 + Q(3)*2 + Q(6)-1)-R(2)*(Q(3)* 

CQ(4)*Q(5)-Q(3)*Q(4))*3 + R(3)*(Q(3)*Q(4)*Q(5)-Q(3)*Q(4)*2 + Q(3))* 

02 
12 = 1 

B=O.DO 

DO 9 1=1,12 

B—D"rDD ( I ̂ 

9 CONTINUE 

CC(1) = -R(4).XQ(3):'Q(4)-Q(6)-Q(8)*Q(4)*Q(5) + Q(8)*Q(4)) + R(5)*( 

CQ(3)::Q(4)-Q(3)-Q(6)-Q(8)*Q(4)*Q(5) + Q(8)*Q(4):;''2-Q(8) + 1) + Q(8)* 

CRE*Q(4)*Q(5) 4- R(2)*(Q(3)*Q(4)-Q(8)*Q(4)''':Q(5))-R(2)*(Q(8)*Q(4)*Q(5 

C)-Q(8)*Q(4))::2-R(3)*CQ(3)::Q(4)-Q(3)-Q(8)*Q(4)*Q(5) + .Q(8)*Q(4)) + 

CRr3):':(QC8):':Q(4)-'':Q(5)-Q(8)*Q(4)*2 + QC8)) 
CC(2) = -Q(3)-':RE:''Q(4)::Q(5)-R(4)*(Q(3)*Q(4)*Q(5)-Q(3)*Q(4)*2 + Q(6) 

C) + R(5):XQ(3):-Q(4)*Q(5)-Q(3)*Q(4)*3 + Q(3)*2 + Q(6)-l) + R(2)*(Q( 

C3)"Q(4)*Q(5)-Q(3)*Q(4))*3-R(3)*(Q(3)*Q(4)*Q(5)-Q(3)*Q(4)*2 + Q(3)) 

0*2 
13 = 2 

0=0.DO 
DO 10 1=1,13 

C=C+CC(I) 

10 CONTINUE 

YD0T(3) = -Q(3)---(A-B + C) 
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Figure 4.2a. f(oo) as a function of 9 for a=0.2 ( ), 

0.5 ( ), 1.0 ( ), 2.0 ( ) and 

5 ( ) using CA2 and CB3 approximations 
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Below a=0.2/0.3 and above a=6.0/3.0 the CA2/CB3 approximate equations 

do not integrate to 6=1. One explanation of this behavior for small a 

is discussed in the next subsection. When a is large it appears that 

the very large rates dominate in the approximate equations to the extent 

of forcing an unphysical solution. The limiting behavior of f(oo) as 

a->o or a-x» can be discussed from simple arguments. 

For a very small filling in stages, similar to that described in 

Section 3.2 will occur. There are five stages for this case corre

sponding to addition at sites with zero, one, two, three and then four 

occupied n.n. with d/d6 f(oo)=-2, -3/2, -1, -1/2 and zero respectively. 

These slopes are not readily apparent in Figure 4.2 indicating that 

a=0.2 is not small enough to demonstrate filling in stages. The values 

of d/de f(oo) do not rule out the possibility that f(oo)+0 is symmetric 

in this limit. General full/empty symmetry does not hold, however. 

since at 6=0.5, f 
o 

ooo 
o 

=0 but f 
x 

X X X  
X  

7 = 0 .  

For Oi approaching infinity the first occupied site will "seed" the 

process and a single, large rectangular island will form (choice of 

rates favors a rectangular shape). The slope of f(oo) versus 6 will 

be minus one since addition will proceed by filling along edges of the 

island where, at finite coverages, almost always two pairs of empty 

n.n. sites are destroyed each time a lattice site is filled. 

( 2 )  T 1O ° O ] = I ,  T [ O ° X ] = T [ O ^ X  
t o I 1 o I 1 o 

0 X  1 X  ='l X X  =1 X ' X  = T  X X  
0 0 1 X  

=0. 

For the case of n.n. blocking the CB2, CB3 and CA2 approximations 

predict final coverages of 0.333, 0.365 and 0.371, respectively. 
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Relative agreement of these approximations is found. The worst 

deviation is found in f 
oo 
oo This is shown in Figure 4.2a. Various 

probabilities are shown in Figure 4.3 for this choice of rates. 

Table 4.2 also shows the values of these probabilities at saturation. 

00 
o This is caused from The CB2 approximation assigns f(ooo)=f 

the severe truncation of this approximation since for the exact 

) hierarchy (using T^=T 

d/dt [f(ooo)-f 

d/dt [fIoooo 

o 
O" o  

o  

00 
0 ] = -T [f 0 

oooo -f 
0 1 
000 

c 0 00 
] 

f \  r  > r  O  

- f  
o 

000 = -T [ f  
0 

oooo +f 
00 

OOOOO +2f1oooo 
I OOJ c 0 00 I o J 

+f 
O 0 1 0 

-2f 
' 00 1 

OOOOO -f 000 -2f oooo 
l o o ,  00 [ ooo 

-f 

r  o  ^ r  0  > 
ooo 000 
ooo -f 000 
o 0 

] , 

etc., which together imply 

f(ooo) t-o - M°°lu»0 * ° 

d/dt Cf (ooo)- f  j °o  = 0 

and 

d~/dt^ Cf(ooo)-f 

d^/dt^ [f(ooo)-f 

] ̂ = 0 
I °j'c=0 

oo 
o ^t.o ° • 

(4.6) 

3 3 3 I 
The deviation of 4t^ is very small when compared to d /dt f(ooo) L_Q 

which is -136t "  
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for f 00 as a function of 6 
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Figure 4 . 3 .  Selected probabilities as a function of 6  for n.n. blocking 
in the CA2 and CB3 approximations 
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Table 4.2. Saturation values for random filling with n.n. blocking 

Truncacion 

Scheme CB2 CB3 CA2 

0=l-f(o) 

f(ooo) 

f °g 

DO 
CO 

f OOO 

o 
OOO 
o 

0.3333 

0.1502 

0.1502 

0.0412 

0.0516 

0.000 

0.3650 

0.0843 

0.1414 

0.0124 

0.0435 

0.000 

0.3711 

0.0856 

0.1401 

0.0206 

0.0479 

0.000 
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(3) T O'O =1, T 
O ' 

o'x =a, T 
o 

X 0  X X 
O'X = 'L x*x =T XX = T XX 

0 0  0  X 
=0. 

Figure 4.4 shows some typical lattice configurations for intermediate 

times during a process where the rate of addition to a site with one 

n.n. is (a) highly inhibitory, a <<1, (b) random, a=l, (c) slightly 

enhanced, a>l and (d) highly enhanced, a>>l (and the rate of 

addition to sites with more than one n.n. is zero). A very repulsive 

n.n. replicating the 1st two stages of staged filling discussed in (1) 

It is found that q in the CA2 approximation gets large at the 

beginning of the second stage when close to the blocking limit. A 1-D 

analogue of how this bad behavior can be produced was given in 

Section 3.8. Keeping only the dominant terms during the second stage 

in the CA2 approximation gives 

d / d d  Jin q çç4' 

It is clear that q 

-[1-2 q (4.7) 

*91) must be less than 0.5 at the beginning of the 

slope will be DSlt  ausin^ ^ -1 I Y T T I 
L ; 

to set large. 

This effect is easily seen for a as large as 0.1 where the minimum 

r 
observed value for qjbçç 

, 0, 
*99 versus 

is 0.545 at 0=0.407, corresponding to the 

effective start of the second stage. Figure 4.5 shows q 

for a=0.01 in the CA2, CB2 and CB3 approximations. 

Figure 4.5 shows some probabilities as functions of 0 for 2=1 

corresponding to random filling of sites with zero or one n.n. As a 

is increased, strings of occupied sites (islands) are formed. When a 

is large, the islands become larger and fewer boundaries are formed. 
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Figure 4.4. Typical lattice configurations for intermediate times 

during a process where the rate of addition to a site 

with one n.n. (rate equals a) is (a) highly inhibitory, 

a < < l ,  ( b )  r a n d o m ,  a = l ,  ( c )  s l i g h t l y  e n h a n c e d ,  a > l  

and (d) highly enhanced, a>>l. Rate of addition to 

sites with two or more occupied n.n. is zero 
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Figure 4.5. as a function of 6 for a=0.01 and blocking with two. 

three or four n.n. in the CA2 ( ), CB3 ( ) and 

CB2 ( ) approximations 
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Figure 4.6. Selected probabilities as functions of 8 for random filling 

of sites with zero or one n.n. (two or more occupied n.n. 

sites blocking) for the CA2 and CB3 approximations 
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A plot of the saturation coverage, as a function of a is given 

in Figure 4.7 which varies little with 6 as might be anticipated. 

Figure 4.8 shows the behavior of f(xx) as a goes from highly 

repulsive to highly attractive. When a is very repulsive, not 

many occupied pairs are formed causing f(xx) to be small until only 

sites with one n.n. remain when f(xx) then increases with slope % 

to As a gets larger, more occupied pairs are formed and the 

slope rises to the maximum value of 

O O 1 f X 1 0 X X 
T o

 

o
 

= 1, X o * x  =a, T O'X =T XX = 3, T XX =T x-x =0 
O 0 0 0 o X 

Figure 4.9 shows some configurations for processes where events can 

occur on sites with zero, one (with rate a) or two (with rate 3) 

occupied n.n. when (a) a=3=l, (b) a=l and 6=j=0, (c) a=3>l and 

(d) 3=a^>l. 

When a=3=l, the lattice randomly fills but does not obtain 6=1 

since sites with three or four n.n. are created and cannot be filled. 

Figure 4.10 shov/s the behavior of some probabilities for this choice 

of rates. 

Some processes, rather than being completely random, may involve 

steric inhibition for two occupied n.n. Figure 4.11 shows the effect 

on of varying g from very small to very large values while 

mai'-nt-oiTi-ina 1 

Figures 4.12a and 4.12b show 0 as a function of a for a=p and 
° sat 

3=a^ respectively. Figures 4.7 and 4.12a, for ajB=0 and a=3 saturations, 

2 
are very similar. When p=a , however, the curve is significantly 
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6 

4 

Figure 4.7 Saturation coverage, as a function of a (with two 

or more n.n. occupied sites blocking) in the CA2 

approximation 
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Figure 4.8. f(xx) as a function of 6 for a=0.1 ( ), 

0.7 ( ), 2.5 ( ), 10.0 ( ) and 

800 ( ) (with two or more n.n. occupied sites blocking) 

in the CA2 approximation 
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Figure 4.9. Typical lattice configurations for intermediate times 

during a process where events (x) can occur on sites 

with zero (rate equals one), one (rate equals a) or 

two (rate equals g) occupied n.n. when (a) a=B=l, 

(b) a=l and 0^0, (c) a=6>l and (d) > 1. Rate of 

addition to sites with three or more occupied n.n. is 

zero 
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Figure 4.10. Selected probabilities as functions of 9 for random filling 

of sites with zero, one or two occupied n.n. (three or more 

occupied n.n. blocking) in the CA2 and CB3 approximations 
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Figure 4.11. Saturation coverage, 0^^^, as a function of 3 while 

maintaining a=l in the CA2 approximation 
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Figure 4.12. Saturation coverage, 8^^^, as a function of a for 

2 
(a) ct=3 ( ) and (b) a=3 ( ) (rates for 

addition with more than two n.n. are zero) in the 

CA2 approximation 
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different. The difference between a=3>l and B=a > 1 is further shown 

by considering f^ooj. When a=6>l island growth is favored, but a=i 

2  
results in "sidechains" and open configurations. If g=a >1, on the 

other hand, the islands will tend to be rectangular with more unoccupied 

oo 
oo area between larger islands and f 

illustrates this for a=0.2, 2 and 10. 

(5) T 

will be larger. Figure 4.13 
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Many possible choices of rates exist when addition to all sites, except 

those with four n.n., is possible. The saturation versus a curves are 

2 3 
shown in Figures 4.14a and 4.14b for a=B=Y and B=a with y=a , 

respectively. 

Some probabilities, as a function of 6, are shown in Figure 4.15 

for the random filling case (a=g=Y=l). 
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Figure 4.13. f|^o| as a function of 9 when 

(a) a=10, 3=100 ( ), (b) a=g=10 ( ), 

(c) a=2, â=4 ( ), (d) a=B=2 ( ), 

(e) Ci=S=0.2 ( ) and (f) a=0.2, 3=0.4 ( ) 
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Figure 4.14. Saturation coverage, 9^^^. as a function of a for 

2 3 
(a) a=6=y ( ) and (b) S=a and •Y=a ( ) 

for the CA2 approximation 
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Figure 4.15. Selected probabilities as a function of 6 for the random 

filling case (a=B=y=l) in the CA2 and CB3 approximations 
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5. APPLICATION TO POLYMER REACTIONS 

Irreversible processes are common in polymer reactions as 

evidenced, for example, by poly(methyl vinyl)ketone condensation (1) 

(cf., Figure 1.1). Flory's well-known theoretical model for this 

reaction can be applied to any reaction that can be modeled as a 

1-D random dimer type process. Several groups (52-56) have observed 

reactions of the random dimer type which come close to his theoretical 

limiting conversion of 86.4%. For instance, the lactonization of 

vinylchloride-methyl methacrylate (see Figure 5.1) by Tanaka, et al. 

(55) obtained a final conversion of 86%. All polymer reactions are, 

of course, not random dimer type processes. This chapter elucidates 

CH. CH. 
I ^ A I ^ 

...-CH„—CH-CH„-C-... ...-CH„—CH-CH.-C—... + CH-C£ 
2 I 2 I 2 I 2 , 3 

C£ C=0 0 C=0 

/ 
H,C-0 

Figure 5.1. Lactonization of vinylchlcride-methyl methacrylate 

a variety of other polymer reactions which require more general models 

(e.g., those developed in Chapters two and three). 

Several workers have dealt with reactions which are n.n. coopera

tive (governed by the rates T , T and T corresponding to zero, 
® 0-0 O'X x*x 

one and two reacted n.n. sites). They are often interested in measuring 

the limiting conversion of their reaction as well as determining values 

for the rates. Whereas the limiting conversion can be experimentally 

obtained, the rates are generally found from a semiempirical model. One 
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appropriate fitting method, developed to describe the quanterization 

of poly-4-vinylpyridine, by Fuoss et al. (57) (see Figure 5.2), 

originates in the idea that the first stage of the process is 

+ CH_CH„CH„CH.Br [-CH_-CH-] + Br" 
2 I j 2 Z Z 2 I n 

c c c 
' O ' I o 

CHgCHgCHgCHg 

Figure 5.2. Quanterization of poly-4-vinylpyridine 

governed by one rate (T^^^), the last by a difference rate 

and that a continuous transition from to occurs during 

the process. They propose the following semiempirical equation to 

describe this shift 

d0/dt = CT e (-e ̂ ^)] CA-63 [1 -8]  ,  (5 .1)  
0 - 0  x*x 

nitrogens and 0 is the fraction of quaternized nitrogens. Equation 5.1 

can be integrated to give 

J [A-e][l-8] " 8(8)/c = + (^o.or^x.x^tl'G )/t . (5.2) 

The left hand side of Equation 5,2 can be evaluated from experimental 

data. The rates are determined by graphing g(0)/t against (1-e ^^)/t, 

choosing trial values for a until a straight line plot is obtained. 
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The models described in Chapters two and three directly provide 

upper bounds for limiting conversions as well as eliminate the need for 

the use of semiempirical methods to determine the rates. 

The rates are determined by analyzing 9 as a function of t during 

each stage of filling. During the first stage (q=qoCoo]) , 

de/dt = T f(ooo) = T qf(oo) 
O ' O  O ' O  

= T e-to'oC e-2(l-q) . (5.3) 
O ' O  

Since q stays relatively close to one during much of this stage and then 

goes to zero quickly at the end of the stage (see Figure 3.4), 

d0/dt - T (5.4) 
O ' O  

Integrating Equation 5.4 gives 

-2n[l-8] = T t 
O ' o 

(5.5) 

A plot of -£nCl-0] verses t will have slope x for small G, thus 

During the second stage, 

d / d t  6 = 2 X  f(2) = 2 X  ( l -8*-8) 
O ' X  O ' X  

(5.6) 

where G*=^(l-e ^) and, after integration. 

-&n[l-@*-6] = 2 - (t+t ) . 
O ' X  0  

(5.7) 

The slope of -£nCl-6*-63 verses (t+t ) gives 2 x in this case. 
O  O ' X  
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Finally, during the third stage 

d/dt e  = f(l) = (5-8) 

and -inCl-G] = T (t+t') . (5.9) 
X ' X  O  

The rate is again obtained by graphing -&n[l-8] against (t+t^). It 

is seen therefore, that all rates are easily obtained from non-

empirical analysis of experimental data. 

The above analysis will now be applied to two reactions reported 

by Rempp (58). Figure 5.3 shows a generic chemical description for 

the reaction of CH^SOCH^Na or CH2S02CH2Li onto polymethylmethacrylate 

(PMMA). 

OCH- R 

I ' I 
CO CO 

il 11 
CO CO CO CO 
11 11 
OCH. OCH. OCH^ OCR. 

J J -) _) 

Figure 5.3. Reaction of R onto PMMA, R =CH2SOCH2 or CH2SO2CH2 

These experiments were performed at 25°C with the degree of substi

tution (conversion) determined by elemental analysis. Rempp stated that 

the reactions were n.n. cooperative with T  > T  > T  and that less 
o-o o-x x-x 

than 1% cyclization occurred. He also said that the theoretical work of 

Higuchi and Senju (59) suggested that if the saturation value of 9 was 

less than 2/3 it can be assumed that T -0. In agreement with 
XX ° 
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Higushi and Senju, it will be shown later in this chapter that 2/3 is 

the highest possible conversion for a process where and occurs 

when T  = T  +0.  
0 * 0  0 " X '  

The reaction of CH^SOCH^Na was onto atactic PMMA (70% of the 

pendant groups alternate sides along the carbon chain) in DMSG solution. 

The appropriate graphs are shown in Figure 5.4. The rates (in inverse 

hours), as obtained from the slopes, are x =2.4, t =0.14 and 
O ' O  o»x 

T =0.022. Rempp, using the method of Fuoss et al. described earlier 
X ' X  

(replacing by reported 8.33, 0.34 and approximately zero, 

respectively. The assignment of i =0 is not consistent with the 
XX 

data since 9=0.63, but for x » x and x =0 the maximum 6 is 
O ' O  O ' X  X X  

0.568 as shown in Chapter three. The breaks occur at 6=0.42 and 0=0.56 

which are very close to the theoretically predicted values of 0.432 and 

0.568 for n.n. cooperative processes where x » x » x 
O ' O  0 * X  X X  

The reaction of CH^SO^CH^Li was onto syndiotactic PMMA (virtually 

all of the pendant groups alternate sides along the carbon chain) in 

a 5:1 DMSG:benzene solution. The appropriate graphs are shown in 

Figure 5.5. Three distinct slopes are again observed and the rates 

are found to be i =1.2, x =0.20 and x =0.035 (compared to 
O ' O  O ' X  X ' X  

-2 -3 
Rempp's values of 9.9x10 , 5.5*10 and approximately zero). Rempp 

reported a final 0 of 0.52. Bourguignon and Galin (60) found a final 

Ô of 0.665 for this reaction in a homogeneous tetrahydrofuran-DMSO 

solution. (Unfortunately, they didn't report S versus t data.) 

Assuming the ratios of the rates reported above are not affected by 
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Figure 5.4a. -£n(l-0) as a function of time for the reaction of 

CH2S02CH2Li onto syndiotactic PMMA. The rates for the 

initial and final stages can be found using this plot. 

The second stage is analyzed in Figure 5.4b. Data points 

are taken from Rempp (58) 
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Figure 5.4b. Second stage graph of data for CH^SO^CH^Li onto 

PMMA (58) 
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Figure 5.5a. -2n(l-9) as a function of time for the reaction of 

CH^SOCH^Na onto PMMA as reported by Rempp (58) 
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Figure 5.5b. Second stage graph of data for CH^SOCH^Na onto PMMA (58) 
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the change in solvent, a limiting conversion 0.665 is compatible with 

our model. The first stage data points suggest that Rempp's values 

for -£n(l-6) are systematically low, since the line intersects the 

-£n(l-0) axis below the origin. 

A third reaction reported by Rempp (58) is CH2S02CH2Li onto 

isotactic PMMA (all pendant groups are on the same side of the 

carbon chain) at 25C in 5:1 DEMSOibenzene mixture (see Figure 5.6). 

-1 -3 
The reported rates are X =T =4.7X10 and X =1.4*10 

O ' O  0 * X  X X  

Processes where x =x »  x 4=0, of which this is an example 
0*0 O'X x*x' 

(presuming Rempp's rates are correct) have some interesting 

theoretical aspects. 

Figure 5.6. Reaction of CH^SO^CH^Li onto isotactic PMMA 

The appropriate equations can be written from Equation 1.1. In 

this case, the resultant equations can be directly integrated to give 

c c c 
\ / \ / 

c c 
i  1  

+ CH^S02CH2Li ̂  CH^OLi + 

CH_ CH 

ffn) = e . n > 2 (5.10) 
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and 

2 ( T  ~ T  )  T  ~ T  
f f n  =  1  -  - 2 T o . o t  _  X X 0-0 -Sio-ot 
^ (-2t +T ) ® (-3T +T ) 

0 - 0  X X  0 * 0  X ' X  

2(T  - T  )  T  - T  
O'O + xx o-o -Txxt /5 11^ 

-2T  +T  -3T  + T  "  ^  /  
0 * 0  X ' X  0 * 0  X ' X  

In the experiment under discussion, '^o»o~'^o*x given by Rempp) 

is two orders of magnitude greater than which implies that the 

reaction on sites with both n.n. occupied is strongly inhibited. If 

the limit as is taken, Equation 5.7 becomes 

f(l) = e ZTo'oC + 1/3 e ^^o-o^ + 1/3 (5.12) 

Thus, the limiting conversion is 6=2/3. This result provides an upper 

conversion limit for processes where i =t 4=0 and t =0. 
O ' O  O - X  X ' X  

Rempp reported a limiting conversion of 6=0.59. (The time of 

observation is not given.) This value is low for the proposed rates 

since the limiting conversion is less than 2/3. Rempp does not give 

the 6 verses t data for this reaction, thus making an analysis of the 

type previously discussed impossible. If, however, the final 

covering fraction is assumed correct an adjustment in the rates to 

T /x =1/8, T =0 would be needed. 
0* X  0*0 X ' X  
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Another polymer reaction which can be better understood using 

irreversible cooperative kinetic modeling is the coordination of 

ZnC&2 with poly(propylene oxide) as reported by James et al. (61) 

(see Figure 5.7). 

^«3 ZnCÎ, <=«3 /™2- '=1 

C—CH_—CH—0—] ->• —CH„—CH—0 ( 
2 n 2 \ 

Zn 

Figure 5.7. Coordination of ZnCi^ with poly(propylene oxide) 

The reaction is a dimer type reaction since adjacent oxygens are 

coordinated during each event. (These workers show that intermolecular 

coordination is unimportant.) 

The coordination of oxygens by ZnC&2 influences Tg, the glass 

transition temperature. This effect is predicted by the Gordon-Taylor-

Wood equation (62) to be 

, • . 
D 

where T^^ and T^^ are the glass transition temperatures for completely 

unreacted and completely reacted polymers respectively. The constant 

0 < K < 1 is specific to the copolymer under cnnsideratinn and is 

the weight fraction of coordinated units. For this copolymer 

Wg=126G/(58+686) where 9 is the fraction of oxygens coordinated, 

1^^=208, T^g=AOO and K=.3. As shown in Figure 5.8, Equation 5.13 

only works to 3=0.52. The authors try unsuccessfully to relate this 
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phenomenon to the Flory model by assuming that this results from no 

more oxygen pairs hein^ available beyond 0=0.52, thus causing the 

ZnC&2 coordinate with individual oxygens. However, the authors 

also point out that the simple Flory model is not adequate since it 

predicts a deviation at 6=0.864.observed behavior can be 

explained by assuming that the process is initially of the dimer filling 

type with n.n. blocking and Equation 5.13 holds only to saturation. 

The deviation point thus predicted is 6=0.549 compared to the experi

mental value of 0.52. From the experimental data of Figure 5.8, ZnCS,^ 

continues to be coordinated until 6=1. There appears to be a break 

at around 6=0.73. This might be explained as follows. First, assume 

the process initially continues by random monodentate complexation on 

sites with at least one empty neighbor. This increases 6 to 0.708. 

In the final stage the remaining single sites are complexed. The 

mechanism proposed beyond the first stage is obviously speculative, 

but as a general proposition one would expect complexation to occur 

at regions of greatest flexibility on the chain. Further, the less 

flexible the chain, the smaller the effect on T^ as a function of 6. 

The examples of this chapter point out the importance of appro

priately modeling irreversibility in polymer processes. The number 

of models for polymer processes exploited to date is small. Because 

of its obvious successes, the Flory model has been used beyond its 

range of applicability. It is hoped that the theoretical models 

developed here will serve as guides, much like Flory's result has in 

the past, to help resolve mechanistic questions in the exciting field 

of polymer chemistry. 
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Figure 5.8. Tg as a function of 6. The data points (•) are from 

the work of James, et al. (61). The theoretical (solid) 

curve is obtained from Equation 5.13 
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6. APPLICATION TO SURFACE PROCESSES 

Gas adsorption onto a metal is of basic interest since it leads 

to an understanding of thin film formation, oxidation, corrosion, 

catalysis and a variety of other interesting processes. Technologically 

it is important in understanding thin film semi-conductors, passivity 

of metals, structural stability, catalytic production of industrially 

important materials, etc. There has been a recent upsurge of interest 

in this field, mainly due to the advance of experimental techniques 

which can better characterize the adsorbed layer on surfaces. Some of 

the steps in adsorption processes may be irreversible and, thus, the 

models developed in previous chapters are helpful. 

Dash (63) has enumerated six idealized categories, of increasing 

complexity, useful in modern theory for the description of a substrate. 

They are: 

(1) Plane boundary. The plane boundary surface is a flat, 

structureless, mathematical surface. 

(2) Attracting plane. The attracting plane accounts for the 

surface normal attraction between substrate and absorbate atoms. 

(3) Adsorption sites. The structure of the substrate may 

be approximated by an array of equivalent adsorption sites with 

pairwise additive single potentials. 

(4) Structured substrate. Periodic variations of attractive 

interactions on the surface may more realistically represent the 

structure of the substrate. 

I 
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(5) Deformable substrate. Excitations and deformations of 

the substrate may occur upon adsorption. 

(6) Heterogeneity. Variation of the substrate due to 

imperfections or differing species. 

The models in this thesis basically encompass descriptions three 

and four when adsorption onto the substrate is irreversible with no, 

or limited mobility. The microscopic dynamics of the process are 

incorporated in the rates. An Arrhenius form of the rates is appro

priate when the adatom distribution depends primarily on the activation 

energies. Other rate descriptions are needed when more complex events 

occur. For example, in the case of irreversible island formation the 

rates for island addition could be enhanced (compared to the rate for 

adsorption on a bare portion of the substrate) by a mobile precursor 

"bumping into" or "falling off of" the islands. See Figure 6.1. 

Invariably it is to be expected that the rates are significantly 

affected by adatom interactions. 

LeBosse et al. Ib4) have identified four kinds of InLeracLiuus 

between identical cheniisorbed adatoms. They are (1) direct bonding, 

(2) indirect bonding, (3) dipole interactions and (4) deformation 

interactions. The first two interactions involve electron sharing, 

the first directly between adatoms and the second through the substrate 

The third interaction deals with electrostatic forces created by the 

adatoms and their screening charge on the substrate. The fourth kind 

of interaction is due to elastic distortion of the substrate by adatoms 

Lopez and Allan (65) have discussed deformation interactions in the 
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Figure 6.1. Enhancement (compared to adsorption on a bare lattice) of Island 
formation by "bumping into" or "falling off of" the islands 
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oxygen-nickel system and concluded that the effect of this last inter

action is small. LeBosse et al. (64) point out that the relative 

importance of the first three types of interactions depends on the 

distance of the adatoms from each other and their ionic character. 

For long distances and neutral adatoms indirect interactions are 

dominant but, for long distances and ionic adatoms, dipole interactions 

are most important. For very short distances, independent of the ionic 

character, direct coupling dominates. Intermediate distances require 

each case to be individually determined. 

As pointed out by Lundqvist et al. (66) a comprehensive theory 

of adsorption processes should incorporate all of these effects and 

use a complete description of the surface; but, due to the many 

complexities of this problem, only the essential characteristics of 

the process are retained in practical models. 

6.1. Surface Processes Requiring Irreversible Models 

Some surtace processes have irreversible, immobile character and 

require irreversible kinetic modeling as previously discussed. Such 

processes are not correctly described by an equilibrium model (67). 

Below is a list of some of these processes: 

(1) Ammonia adsorbed onto y-alumina (68). At 50° ammonia 

adsorbed onto y-alumina is immoble and will form nonequilibrium 

adsorbate configurations. 
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(2) Dehydration of wet y-alumina oxide (5). Dehydration of 

wet y-alumina oxide (see Figure 1.4) takes place in an irreversible, 

immobile manner for temperatures less than 600°C. 

(3) Adsorption of oxygen on a stepped platinum surface (69). 

The saturation coverage of oxygen adsorbed onto the step, inside 

edge sites is approximately constant over a broad temperature range. 

This indicates that the oxygen atoms chemisorbed on these sites are 

immobile. 

(4) Chemisorption of CO on the (210) face of tungsten (70). The 

chemisorption of CO on the (210) face of tungsten is immobile below 

700°K. For chemisorption with both oxygen and carbon in contact with 

the surface cooperative effects are also present, manifested by a 

state which has in occupied n.n. and a more strongly bound $2 state 

when n.n. are unoccupied. 

(5) Coadsorption of CO and oxygen on the (100) face of tungsten 

(71). Three g states (two surface sites occupied) and one weekly 

bound a suace (one surface sice occupied) are observed for CO coadsorbctl 

with oxygen on the (100) face of tungsten. Sequential filling of these 

states has been demonstrated. Separate studies (72) show that S-CO is 

immobile below 600°K on this crystal surface. 

(6) Chemisorption of nitrogen on the (100) face of tungsten (73). 

The next section discusses the chemisorption of nitrogen on the (100) 

face of tungsten in some detail and shows that an exploration of this 

process requires an irreversible cooperative model. 
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6.2. Chemisorption of onto W(IOO) 

The nitrogen-tungsten system has been extensively studied (3, 

73,74-77). In a very thorough discussion by King and Wells (73), 

it was pointed out that this system is well-suited for analysis 

because the dissociatively chemisorbed (6) state is formed with a 

large heat of adsorption compared to the physisorbed and molecularly 

chemisorbed states. As a result the B state can be assumed not to 

desorb during the formation of the adlayer. The physisorbed 

precursor state is expected to exist at very low concentration on 

the surface. The (100) face of tungsten is also well-characterized 

making this system a good candidate for theoretical analysis. 

6.2.1. Characterization of the process 

The basic assumptions used by King and Wells to describe this 

system are: 

(1) The accommodation coefficient, which gives the probability 

of a molecule incident on the surface being piiysisoibeJ, is indepen

dent of adlayer coverage and crystal temperature. 

(2) A physisorbed molecule can (a) dissociatively chemisorb 

over a pair of empty nearest neighbor adatom sites, or, (b) hop to 

a different physisorption site, or, (c) be scattered back into the 

gas phase. The rates of (b) and (c) depend on whether or not the 

physisorbed molecule is over filled or empty sites on the lattice. 
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(3) At all coverages the adatoms in the chemisorbed layer 

occupy identical sites on the substrate. At temperatures below 

about 650 K the adatoms in the g overlayer are immobile. Adatom 

penetration of the substrate and reconstruction of the substrate 

are precluded. 

(4) Newly formed adatoms are mobile because they have excess 

energy due to the exothermicity of the chemisorption reaction. 

These "hot" adatoms can hop between adatom sites until they lose 

sufficient energy to become immobily attached to a particular 

adatom site. 

(5) Surface hopping of the "hot" adatoms leads to a distribution 

of adatoms on chemisorption sites which is of equilibrium form. Thus 

P(oo), which is significant in the sticking coefficient expression, 

can be obtained from an equilibrium Ising model. This quantity is 

assumed to be determined by a pairwise interaction energy between n.n. 

adatoms which is strongly repulsive. 

The salient experimental facts in support of this model are (,/3): 

(1) Only the accommodation coefficient is affected by the gas 

temperature. This supports the supposition that the precursor state 

Co the chemisorbed state is a physisorbed state which is energy 

accommodated with the surface. 

(2) Experimentally the accommodation coefficient is independent 

of Surface coverage. 
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(3) There is very strong evidence, both in the work of King 

and Wells and that of other investigators (78), that the chemisorbed 

adlayer is immobile below about 650K on a reasonable time scale of 

experiment. Above that temperature it becomes increasingly mobile 

and desorption from the adlayer becomes appreciable above lOOOK. 

(4) The adlayer "saturates" when the density of the adlayer 

is equal to about 60% of the surface density of tungsten atoms in 

the (100) plane. Evidence from LEED indicates that the adlayer is 

partially ordered in a c(2x2) pattern (75,79). If it is assumed that 

the number of chemisorption sites is the same as the number of tungsten 

atoms in the (100) plane (80), then these data suggest that the B state 

is dissociatively adsorbed and that newly formed adatoms are somewhat 

mobile. 

(5) In desorption experiments, two peaks associated with the 6 

state are observed (67,81). Based on this fact, it is reasonable to 

assume that adatoms without n.n. are more difficult to desorb than 

those having n.n. 

The King and Wells model is reasonable in most regards and is 

in good agreement with experiment. However, in that the model assumes 

an equilibrium spatial distribution of adatoms, it is not physical. 

If the adatoms are immobile when energy accommodated with the surface, 

then there is no obvious mechanism for achieving an equilbrium spatial 

distribution in the adlayer. The experimental evidence is that no such 

mechanism, exists since if f(2), which is discussed in the next section 

with regard to the sticking coefficient, were an equilibrium quantity 
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ic would be a rather sensitive function of crystal temperature under 

the assumed condition of strong interaction between adjoining adatoms. 

However, King and Wells find that, experimentally, it is sensibly 

independent of temperature over a large temperature range. 

As further evidence that f(2) is not an equilibrium property, 

note that the adlayer seems to saturate (i.e., f(2)=0) at a surface 

coverage of about 60%. For an equilibrium model with a finite lateral 

interaction energy, the surface truly saturates only at 0=1, and the 

point at which saturation is "effectively" complete is somewhat arbi

trary, but definitely much higher than 60%. Thus, at very low sticking 

probability the experimental sticking coefficient curve does not agree 

with the equilibrium prediction. 

Finally, it should be noted that the equilibrium expression for 

f(oo) used by King and Wells implies that the quantity f(2)+6, as a 

function of 0, is symmetric about 6=h- However, this quantity, as 

obtained by fitting the sticking coefficient equation (Equation 6.2.2.1) 

to experiment, does not exhibit this symmetry. 

As indicated above, the experimental observable that may also be 

theoretically derived is the sticking coefficient. An expression for 

the sticking coefficient has been previously derived (3) as 

S(0) = S( 0 ) C l+K( l/f( 2 ) - l ) ] " ^  (6.1) 

where K=K'/(K -rK,). The constants K', K and K^ are the rate constants 
d c d d c d 

for desorption over a filled or partially filled site, for chemisorption 

and for desorption over a bare site on the lattice respectively. This 



www.manaraa.com

154 

equation was also obtained by Tamm and Schmidt (82) for an adsorption 

model via a precursor state. Clavenna and Schmidt (77) point out that 

this equation also follows from the Kisliuk model (83) for random 

two site adsorption in the limit K,=K'. 
d Q 

The concentration dependence of the sticking coefficient arises 

from the function f(2). The experimental evidence suggests that the 

formation of n.n. adatom pairs is strongly disfavored. However, since 

the adlayer saturates at there must be some disorder in the 

adlayer. To account for this disorder, King and Wells assume that 

the adatoms have an equilibrium distribution on the lattice which is 

governed by a large, but finite, repulsive interaction between n.n. 

pairs. If this model is correct then the disorder in the adlayer 

arises from entropie considerations and should therefore increase with 

increasing crystal temperature. Thus, f(2) should be a function of the 

temperature of the solid and the saturation coverage should increase 

with temperature. These predictions are not in agreement with experi

ment . 

For a process with strongly repulsive n.n. interactions, filling in 

stages will occur as discussed in Section 3.2. In the current system, 

hot adatoms will first land on sites with no n.n. Since f(xx)=0, it 

follows from conservation of probability that 

f(2) = 1 - 20 (6.2) 

during this first stage. At some point in the process, all adsorption 
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sites which have all empty n.n. sites will be gone but empty sites 

with at least one empty n.n. will remain. Under the assumed mechanism, 

dissociation can continue to occur because neighboring pairs of empty 

sites exist (i.e., f(2)j0). Since the adatoms which are energy accom

modated with the surface are immobile, new adatoms formed must accept 

sites which have at least one n.n. and f(xx) will no longer remain 

zero. (This is in contrast to the infinite interaction equilibrium 

case where the adlayer can simply reorder to keep adatoms apart.) The 

chemisorption process will continue until f(2)=0. Thus, as an inherent 

feature of the nonequilibrium nature of ordered adlayer formation, the 

sticking coefficient vanishes and the adlayer saturates at a covering 

fraction greater than Q=h- This result is not dimensionally dependent. 

According to the model, the final step which determines the adatom 

distribution is the loss of energy of the hot adatoms to the lattice 

which makes them immobily attached to the surface. There is no 

mechanism by which the immobile adatoms can become spatially equili

brated and hence an equilibrium model for their distribution is 

basically untenable. 

6.2.2. 1-D model and comparison with experiment 

The 1-D model with n.n. repulsive cooperative effects incorporates 

the basic features of the general treatment, yet allows a simplified 

investigation of the nature of the adlayer disorder and its consequences. 

The necessary equations are given in Chapter two and the ordered filling 

limit, which is pertinent here, is described in Section 3.2. By 

I 
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employing this model, it is tacitly assumed that the rate constants 

have no "memory" of when adatoms in the environment were immobily 

fixed. This is consistent with a small hot adatom concentration and 

rapid equilibration of newly frozen adatoms with the surface. 

The relationship between f(2) and 6 in the repulsive limit is 

(see Section 3.2) 

f(2) = 1-29, 0 < 8 < e * ( l )  = (l-e"^)/2 = 0.432, (filling with no n.n.), 

= l-6*(l)-ô, 9*(1) < 9 < e*(2) = (1+e /2 = 0.568, (filling with one n.n.) , 

= 0, 9*(2) < 9 <1, (filling with two n.n.) . (6.3) 

In Figure 6.2, the relative sticking coefficient, S(9)/S(0), is given 

for the (100) face of tungsten at a crystal temperature of 300K. The 

data points are experimental values taken from the work of King and 

Wells (73). The values of 9 have been calculated on the assumption 

that the density of adsorption sites is equal to the surface density 

of tungsten in the (100) plane. The solid curve is theoretically 

derived from Equation 6.1 using the nonequilibrium functional form for 

f(2) of Equation 6.2. It has one adjustable parameter, k=0.09. The 

discontinuous slope in the curve results from the face that it was 

obtained by determining f(2) in the repulsive interaction limit. For 

small deviations from this limit, the curve is smooth. The dashed curve 

is the theoretical result given by King and Wells. It is obtained from 

Equation 6.1 using the equilibrium functional form for f(2) as obtained 

from the Ising model in the Bethe approximation (50). In this case. 
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Figure 6.2. The relative sticking coefficient for nitrogen on the (100) face of tungsten at a 
crystal temperature of 300°K. The data points were experimentally determined by 

King and Wells (73) 
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f(2) = 1-8-26(1-8)/{[1+48(l-6)B(Tg)]^+l} (6.4) 

where B(T^)=exp(-w/kT^)-l and (,•! is the repulsive interaction energy 

between n.n. adatoms. King and Wells gave the sticking coefficient 

as a function of a "sealed" density 8'=y8. Thus, the dashed curve 

of Figure 6.2.2.2 depends on three adjustable parameters, K=0.083, 

Y=1.05 and B=0.989 where B is the ordering parameter of Equation 6.4. 

The figure shows that the equilibrium expression for the sticking 

coefficient (dashed curve) does not have the saturation behavior 

exhibited by the experimental points. This, and the fact that the 

equilibrium expression for f(2) of Equation 6.4 is dependent on the 

crystal temperature, are two of the principal objections to the 

equilibrium mode. The nonequilibrium expression for S(8)/S(0) 

(solid curve) does not suffer from these deficiencies since it is 

based on a temperature independent expression for f(2) and predicts 

a definite saturation value in the repulsive interaction limit. An 

effective saturation near this limiting value is also found for a 

range of strong repulsive interactions. Both of these features are 

consequences of our general theoretical treatment and are not limited 

to the 1-D model. The saturation value e^^^=6*(2)=(l+e ^)72=0.568 

is independent of any adjustable parameter and is about 5% less than 

the apparent experimental saturation covering fraction. 

In Figure 6.3, the function f(2)+8 is given as calculated from 

Equation 6.3 (solid curve) and from Equation 6.4 (dashed curve). The 

•latter has been computed using a value of B=0.989. As previously 



www.manaraa.com

0 

8 
o 

6 

0.2 0.4 0.6 0.8 1.0 

Figure 6.3. f (2)4-] as a function of i). The theoretical irreversible ( ) and equilibrium ( ) 

curves are obtained from Equation 6.3 and 6.4, respectively. The data points are 
taken from King and Wells (73) and are for temperatures of 300°K (x) and 433°K (o) 
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mentioned, although the quantity B is theoretically a function of T^, 

King and Wells treat it as an adjustable parameter to be determined at 

each temperature. They found that the constant value of 0.989 fit the 

data well at all temperatures. Experimental points are also given in 

Figure 6.3 which have been obtained by inverting Equation 6.4 using 

sticking coefficient data reported by King and Wells for the crystal 

temperatures 300 and 433K. These are the two temperatures which the 

investigators used that lie well below the temperature of adatom 

mobility (which is somewhere in the range 650 to 750K (65,79)). 

Even allowing for the scatter in the experimental points, at 

low values of 6 the apparent slope of f(2)+6 appears to be less (i.e., 

a greater negative number) than the theoretical limiting slope of -1. 

This can be easily rationalized by noting that K in Equation 6.1 is 

assumed constant. It is reasonable to assume that the rate of the 

initial chemisorption mechanistic step over a pair of empty sites 

decreases with increasing surface coverage due to the repulsive inter

action of n.n. adatoms. Such an effect would cause K to increase with 

6. Only a very slight dependence of K on 6 of this kind is required 

to correct the difficulty cited above and to increase the agreement 

of theory and experiment significantly in the low 0 region. 

After accounting for the 6 dependence of K, it is still evident 

that the experimental data is asjTnmetric while the theoretical models 

predict symmetry about ô=.5. No explanation for this asymmetry is 

available from the equilibrium model. However, the following simple 
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extensions of the basic irreversible model described above do lead 

CO asymmetry: 

(1) Relaxation of repulsive n.n. limit. As shown in Section 3.2.3, 

a perturbation from the repulsive n.n. limit causes asymmetry. Further

more, as required in this case, see Figure 3.12 for an illustra

tion of this effect. Suppose, for the nitrogen on tungsten system 

being discussed, we may estimate the rates by assuming an Arrhenius 

form and describing the activation energy by the equilibrium inter

action energy. Using the value of w=0.989 given by King and Wells for 

the interaction energy results in a plot very close to the infinite 

interaction limit, thus justifying the analysis just given. We conclude 

that the experimentally observed asymmetry is not due to relaxation of 

the repulsive n.n. limit. 

(2) Spatial correlations of hot adatoms due to limited mobility. 

No correlation is assumed between hot adatoms (this is reflected in the 

source term of the hierarchy). In particular, the possible spatial 

correlation ur hoi. aùauowa which were initially partners in the undisso-

ciated molecule has been ignored. Another way to state this assumption, 

is to say that each adatom is mobile for a time sufficiently long so 

that it can find an optimum site to immobily chemisorb onto in the 

adlayer. This ignores the fact that hot adatoms are formed in pairs 

and it becomes increasingly difficult for both adatoms to find favored 

sites as the adlayer fills. This spatial correlation of adatom pairs 

breaks the symmetry of f(2)+ô as a function of 6. This break in the 

symmetry may be understood by considering the filling process in the 
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second stage of filling. During that stage, dimers land on a pair of 

sites flanked on both sides by occupied sites. According to the 

theoretical model, the molecule dissociates into two hot adatoms each 

one then finding sites with only one occupied n.n. For this process, 

f(2) falls off with a slope of -1 and f(2)+6 has slope zero (both as 

functions of 0). As the lattice fills, however, it may physically 

become more difficult for both adatoms to find sites with only one 

n.n. occupied site. For the sake of argument, suppose none of the 

adatoms can migrate sufficiently far to find a second pair of empty 

sites, then the adsorption of two adatoms will destroy only one pair 

of empty adjacent sites causing f(2) to fall off with slope and 

f(2)4-6 to have a slope of %. Figure 6.4 illustrates this effect. 

The true effect is, of course, intermediate between these limits. 

Another model which gives qualitatively similar results was 

presented in Section 3.7. That model predicts asymmetry in the 

function f(2)+9 as illustrated in Figure 3.25 for the 1-D, R=1 and 

d=l case (infinite repulsion limit). 

The experimental evidence suggests that the nitrogen adatoms 

are in a c(2x2) pattern on the tungsten surface. This indicates an 

attractive second n.n. cooperative effect as well as a n.n. repulsion. 

The effects of an attractive second n.n. in the 1-D irreversible model 

have been discussed in Section 3.1. This effect, by itself, retains 

the symmetry of f(2)+6, but makes the second stage shorter. This moves 

8*(1) to the right which is in agreement with the experimental data. 
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Figure 6.4. f(2)-40 as a function of 0. The solid curve is calculated from Equation 6.3 and the 

dashed curve is calculated as described in the text. The two curves coincide except 
in the middle region 
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It is, of course, possible that all of these effects are occurring 

in varying degrees and combining to create the experimentally observed 

behavior. It is true, however, that a 1-D model, even with all of these 

effects considered, should not be expected to completely describe a 

2-D process. At the same time, many of the concepts used in the 1-D 

model carry over to 2-D and so the same qualitative effects should be 

observed. 

6.2.3. 2-D model 

The adlayer adsorption sites on the (100) face of tungsten are in 

a square lattice geometry, and the most obvious extension of the theory 

would be to incorporate this geometry into the model. As discussed in 

Chapter two, the 2-D kinetic equations are not exactly soluble. It is, 

however, possible to discuss the behavior of f(2) in the repulsive 

interaction limit (the analogue of the case treated in Chapter four). 

Table 6.1 describes the filling process for highly repulsive n.n. 

cooperative effects (the site indicated by • is being filled) . 

1  ?  
Table 6.1. Filling in stages on a 2-D square lattice for R =R~=1 

o 
1st stage: 0"0 d/de f(2) = -2 

2nd stage: o°o = -3/2 

_  ,  o x  
3rd stage: o-x or o*o 

X X 

X 

X 
= -1 

4th stage: x^x — —1/2 

5th stage: x^x 0 
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Both the 1-D model and the 2-D square lattice model exhibit an initial 

stage with d/d9 f(oo)=-2. This is in agreement with experiment, but 

the detailed behavior of later stages is not. A more realistic model 

for the adsorption process is described below. 

It is clear that the first stage of filling involves occupation 

of sites with no filled n.n. as assumed above (and leading to 

d/d9 f(oo)=-2). However, experimental observation of a C(2x2) 

structure indicates that adsorption is enhanced if a diagonal n.n. 

is occupied (no doubt in part due to an attractive diagonal n.n. 

interaction). Thus, the end of the first stage should be changed 

from the previous value of 9=0.37 (for random filling with n.n. 

blocking) to a somewhat higher value, less than 9=0.5, due to more 

ordered filling. A horizontal and/or vertical enhancement of rates 

for second n.n. filled also produces this type of shift (as seen by 

the previous 1-D analogous case). At 9=0.475 the islands have grown 

together leaving only sites with at least one n.n. occupied. Figure 6.5 

illustrates the basic configurations along the island boundaries. 

The second "stage" of filling is much more complex and can be 

associated with a variety of mechanisms. The nitrogen molecules 

dissociate in the channels on remaining pairs of adjacent empty sites 

between the islands. If the hot adatoms are uncorrelated, the slope of 

d/d9 (f(2)+9) for adsorption with one filled n.n. in the straight 

(Figure 6.5b) and "zig-zag" (Figure 6.5c) configurations will be -0.5 

and zero, respectively. These are both low compared to the experimental 

value of approximately 0.6. If the hot adatoms remain correlated after 
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Figure 6.5. Basic configurations along island boundaries 
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dissociation, the slopes for landing on these sites are -0.25 and 0.25 

respectively, more in agreement with experiment. Another possibility 

is infiltration of hot adatoms into interior sites near the channels. 

This would not destroy any empty site pairs and thus give d/d6 

(f(2)+9)=l. Infiltration to interior sites can occur during this 

process since (a) the hot adatoms would not need to jump over other 

adsorbed adatoms (they could go diagonally to the desired site) and 

(b) the tendency for hot adatoms to separate could provide the needed 

energy for this diagonal movement. A mixture of adatom correlation 

and infiltration can account for the experimental data, but more 

detailed study is required to enable an authoritative desorption to 

be given for the mechanism of this process during the second "stage". 
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7. APPLICATION TO CRYSTALLINE SOLIDS 

The importance of irreversibility has not been fully investigated 

in many physical processes. In Chapters five and six, some one and two 

dimensional examples, respectively have been described. There are 

also, of course, three dimensional processes that occur irreversibly 

and require the kind of modeling developed in this thesis. Some 

examples are now given from various areas of chemistry and physics. 

(1) Solid state photochemistry. Solid state photochemistry 

provides many examples of irreversible processes (84). Elgavi et al. 

(85) give two typical irreversible photochemical processes where the 

original crystal is composed of monomer units, but upon irradiation 

bonds are formed between these are shown in Figure 7.1. 

R^-C=C-C=C-R^ R^-C=C-C-C-R„ 

hv 
R -C=C-C=C-R„ -> R -C=C-C-C-R„ 

solid 

Figure 7.1. Solid Sr.ate Photodimerization of (a) Ri=2,6-CgH3C£25 R2=Fh 

and (b) R^=2, ô-C^tl^CJ.,, R2=2-thienyl (85) 

These solid state, lattice controlled, photocycloaddition reactions take 

place irreversibly and require models similar to those discussed through

out this thesis. The reactions given in Figure 7.1 can be modeled as 

random dimer processes. The packing diagram for these crystals is just 

that shown in Figure 7.1 (85). There is, of course, a 3-D network of 

the monomer units, but, in these cases, the only distances short enough 
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for dimerization to occur are along these stack planes (one of which 

is shown in Figure 7.1). Further, these particular reactions are 

steriospecific, allowing rings to form next to groups only. This 

suggests that the process is really one dimensional along the stack 

plane (next to the groups). The experimental work (86) for (a) 

in Figure 7.1 indicated yields of 80% compared to the theoretically 

predicted 86% (of Chapter five) for the random dimer model. 

When and R^ in Figure 7.1 are small groups (e.g., methyl) 

it is possible for interstack distances to allow dimers to form (87). 

These reaction, in general, can take place next to either the R^ or 

the R^ groups (separation of the bonds to form eight membered rings 

apparently seldom occurs (87)) and, therefore, require 3-D models. 

The processes discussed above could be monitored using x-ray 

diffraction techniques since the dimer rings will diffract differently 

than the monomer units. The short range order (SRO) intensity in terms 

of the correlation function C(o-=-o) (see Chapter three), for an N-site 

lattice in which all sites have the same number of neighbors and each 

site is initially in condition A and then transformed to condition B 

(with scattering factors f^ and fg, respectively) is (88) 

= I C(o^^o) cosC-2Tir* (s-s^)/XI (7.1) 

_r 

where the unit vectors s and s indicate the final and initial direction 
o 

for the x-radiation and X  is its wavelength. 

As an example, the exact 1-D results previously derived in Chapter 

three are now used to evaluate the 1-D x-ray SRO intensity for a binary 



www.manaraa.com

170 

(A->-B) system. In 1-D, Equation 7.1 simplifies to 

Ig^o/N(f^-fg)^ = I C(o^o) cos(4TrjA/A) , (7.2) 
j=0 

where i  is the lattice spacing. If 5. is a multiple of X ,  the cosine 

of Equation 7.2 is one and the maximum intensity is obtained. The 

ratio £/X is the only variable in the 1-D case for scatterers A and B 

for a particular choice of cooperative effects. Figure 7.2 shows 

the irreversible for highly inhibitory and the corresponding 

2 
highly repulsive equilibrium values of I /N(f,-f„) as a function 

BK.U A D 

of 9. Another method for treating the SRC intensity, using a density 

expansion technique developed by Hoffman (47), is outlined in 

Appendix B. 

(2) Order-order transformations. Titanium undergoes an order-

order transition from a body centered cubic (6) structure to a hexagonal 

close packed (a) structure at approximately 850°C (89). Water quenching 

from above CjO°C results in wedge-shaped crystals of the a type (90). 

Nishiyama et al. (90) show that certain boundaries must be completely 

due to the tranformation process and can not exist in thermal equilib

rium. We assume these boundaries are the interfaces between islands 

that have grown together. This kind of process is described by 

Equation 1.1 as shown in Chapter three and four. 

Hardening of steels, usually accomplished by relatively rapid 

cooling (quenching), is an important industrial process which often 

occurs through an order-order transformation (e.g., face centered cubic 
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Figure 7.2. 1-D short range order intensity as a function of 6 for 

irreversible ( ) and equilibrium ( ) processes 

for highly inhibitory n.n. (t^^^=0.01) 
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austenite transforms to body centered cubic martensite when the carbon 

content is less than .25% (91,92). These diffusionless Martensitic 

transformations (criinsCormations that occur by cooperative atomic 

movements) have been called Shogidaoshi, a Japanese word meaning 

"falling one after another in succession'' (92). These processes are, 

also, island building processes and should be modeled in a manner 

similar to that described in Chapters three and four since the time 

scale for equilibration is much longer than allowed during quenching. 

Given the relative rates for initialization and propagation of the 

process, such a model could, predict the island size and shape 

distribution. 

(3) Disorder-order transformations. Disorder-order transforma

tions also display irreversible character under certain conditions (93). 

For example, Jaumet and Sutcliffe (94), working with Cu-Au alloys between 

15.5 and 34.2 atomic percent gold, say that "incredibly long times" are 

required to attain thermal equilibrium. If the rate of cooling is fast 

compared to the rate of transformation, the process will not be able to 

equilibrate. For example, the quenching and subsequent isothermal 

transformation of Cu^Au (95) at the final temperature, has two stages. 

The first, very fast, stage is associated with development of short 

range order only (a sort of island formation), while the second slower 

stage apparently corresponds to development of the long range order (93). 

Another process of this type is illustrated by the cooling of carbon 

monoxide to low temperatures. Carbon monoxide does not orient itself in 

the most favorable way upon crystallization due to its small dipole 

I 

I 
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moment. When cooled, the lowest energy state is not realized because 

the molecules get locked into the original configuration (96). This 

manifests itself in the entropy at very low temperatures (zero point 

entropy). For a completely random choice, the difference from perfect 

order is Rjln 2=1.38 e.u. The observed change is 1.1 e.u. (96,97), 

indicating that some ordering has occurred. Quantitative study of 

this kind of irreversible ordering presumably also requires models of 

the kind developed in this thesis. 
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10. APPENDIX A: CONDITIONAL PROBABILITIES FOR CB3 
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11. APPENDIX B: DENSITY EXPANSION FOR THE SRO X-RAY INTENSITY 

Equation 7.1 for the short range order (SRO) intensity can also 

be written in virial expansion form. The density virial expansion for 

the probability of finding two transformed sites at a vector 2 from 

each other, Pgg(2) » has previously been given by Hoffman (47) for an 

Arrhenius choice of rates with pairwise additive activation energies. 

A generalization of the technique has also been developed for arbitrary 

rates (98). Following Hoffman 

Pgg(2) = A^(_r) 9^ + A^(2) 8^ + A^(r) 9^ + ••• (H-l) 

where the 9 independent coefficients are exactly obtainable and can be 

written in a form involving Mayer cluster diagrams. Then, 

C(x-=-x) = (A2(_r)-1) 9^ + A^(r^) 0^ + A^(r_) 0^ + ••• (11.2) 

and 

lsRo/NCfA"^B^" = I iLA2lr;-i] 0" + A^(r; 9' + A^i^) 0^ + "'J 

(11.3) 1 -27ri 
X cos^P^ r-(S-S ) 

A ~ O 

The following definitions are then made: 

h = (S-S ) 
— o 

C„(]i) = 1 [A_(r)-l] COS(-2TT £-h) 
r 

C (h) = I A_(r) cos(-2- r-L) 
^ r 



www.manaraa.com

183 

Ĉ (]i) = 1 Â (£) cos(-2ir _r*_h) 

(11.4) 

Equation B.3 then transforms to 

= e^CC2(h)+C2(h)9+C^(h)6^+---] (11.5) 

which is the desired virial expansion for the SRO intensity as a 

function of h. 
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